
Corso Professionalizzante di Specializzazione (3 CFU)

Ingegneria dell’Informazione o magistrale in Ingegneria Informatica

Automatica, Ingegneria Elettronica,

Ingegneria delle Telecomunicazioni

WSN and VANET Security
Part II: Techniques for WSN and VANET

Security

1

Lecture II.1

Passive Security Functions: Techniques

Ing. Marco Pugliese, Ph.D., SMIEEE

Senior Security Manager cert. UNI 10459-2017

marpug@univaq.it

April 26th, 2024

Security

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

2

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Passive Security Functions
 Passive Security Functions (PSFs) concern:

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

Application LayerApplication Layer

(Transport Layer)(Transport Layer)

P
o
w

e
r

P
o
w

e
r

M
o
b
ility

M

o
b
ility

T
a
sk

T
a
sk

 M
a
n
a
g

M
a
n
a
g

S
e
cu

rity

S
e
cu

rity
 M

a
n
a
g

M
a
n
a
g

Application LayerApplication Layer

(Transport Layer)(Transport Layer)

P
o
w

e
r

P
o
w

e
r

M
o
b
ility

M

o
b
ility

T
a
sk

T
a
sk

 M
a
n
a
g

M
a
n
a
g

S
e
cu

rity

S
e
cu

rity
 M

a
n
a
g

M
a
n
a
g

S
e
cu

rity

S
e
cu

rity
 M

a
n
a
g

M
a
n
a
g

3

(Transport Layer)(Transport Layer)

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

P
o
w

e
r

P
o
w

e
r M

a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
o
b
ility

M

o
b
ility

 M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

(Transport Layer)(Transport Layer)

Network LayerNetwork Layer

Data Link LayerData Link Layer

Physical LayerPhysical Layer

P
o
w

e
r

P
o
w

e
r M

a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
o
b
ility

M

o
b
ility

 M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

M
a
n
a
g

M
a
n
a
g
. P

la
n
e

. P
la

n
e

PAY ATTENTION:

The same acronym MAC is used for two very different functions: Medium Access Control

vs. Message Authentication Code.

In cryptography, is also used the term MIC (Message Integrity Code) for MAC.

Basic Terms

Cryptography: Secret (crypto-) writing (-graphy)

 Plain-text: the original message.

 Cipher-text: the ciphered message.

 Cipher: an algorithm to add entropy to a plain-text in input so that the resulting
cipher-text in output appears as random as possible.

 Decipher: an algorithm to substract entropy to a cipher-text in input and
extract the related plain-text in output. Cipher and decipher can be the same.

secret information used as a parameter to ciphers and deciphers.

4

 Key: secret information used as a parameter to ciphers and deciphers.

 Key Establishment Protocol (KEP): a scheme to generate keys

 Key Management Protocol (KMP): a scheme to manage keys

 Authentication: an algorithm to prove the integrity of the message (MAC).

 Signature (or Sender Authentication): an algorithm to prove the integrity of
message sender.

 Symmetric Cryptographic Scheme: same key to cipher / decipher.

 Asymmetric Cryptographic Scheme: different keys to cipher / decipher.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

5

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Shannon’s building blocks
 product cipher: two ciphers C1 and C2 in sequence (round)

 commuting cipher: given ciphers C1, C2 with key spaces K1, K2 respectively, if the
space K12 of product cipher C1C2 is equal to key space K21 of C2C1, then ciphers C1

and C2 commute.

– The security provided by a product of commuting ciphers is the same of single
ciphers.

– If C1 and C2 are commuting ciphers and given the same input, the cascades C1-C2 and
C2-C1 produce the same output.

 Shannon proposed the following non-commuting ciphers:

6

– S-Box (substitution cipher) providing confusion by substitution. Confusion means
that each binary digit of the cipher-text should depend on several parts of the key.
If one bit of the key is flipped then (statistically) half of the bits in the cipher-text
should change. The property of confusion hides the relationship between the
cipher-text and the key.

– P-Box (permutation cipher) providing diffusion by permutation. Diffusion means
that the statistical structure of plain-text is dissipated over the cipher-text. If one
bit of the plain-text is flipped then (statistically) half of the bits in the cipher-text
should change too, and similarly, if one bit of the cipher-text is flipped then
(statistically) one half of the plain-text bits should change too. The property of
diffusion hides the relationship between the cipher-text and the plain-text.

 S-P design principle currently in use (e.g. in AES NIST standard)

S-box (substitution)

0

1

2

3

4

3 bit

input

0

1

0

1

2

3

4

1

1

3 bit

output

2 6

7

4

5

6

7

0

4

5

6

7

0

Word size of 3 bits => mapping of 23 = 8 values

Note: a lookup table 8 x 8 is here used (in AES is 16 x 16)

P-box (permutation)

4 bit

input

1

0

1

1

1

1

1

0

1

1

1

1

8

10 10

Example 1 Example 2 - swap two

halves of input

Block ciphers
 Block ciphers operate on block (or string, or grams) of binits of the plaintext.

 An n bit block cipher is defined as:

– given E ∈ PRF defined as E: {0, 1}n x {0, 1}k → {0, 1}n such that E-1(E(x,
K),K)=x holds for ∀x ∈ {0, 1}n and ∀K ∈ {0, 1}k .

– given x and K, then E(x,K) must be of polynomial complexity;

– given x, then E-1(x,K) must be computational infeasible.

 If E is a random function (E ∈ RF) then the cipher is perfect.

9

E… …
…

n bit

input

n bit

output

k bit key

Block Cipher design criteria
 completeness

– each bit of the output block should depend on each bit of the input block
and on each bit of the key.

 avalanche effect (Shannon, Feistel)

– changing one bit in the input block should change statistically half of the
bits in the output block.

– changing one bit in the key should change statistically half of the bits in the
output block

10

output block.

 statistical independence

– input and output should appear to be statistically independent.

En bit

input

n bit

output

k bit key

En bit

input

n bit

output

k bit key

The magic of XOR

 XOR (⊕) is the Exclusive OR. If c=m ⊕ k:

(m=0)⊕(k=0) = (c=0)

(m=0)⊕(k=1) = (c=1)

(m=1)⊕(k=0) = (c=1)

(m=1)⊕(k=1) = (c=0)

 XOR is associative (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) and commutative a ⊕ b = b ⊕ a

 XOR is the addition in GF(2).

XOR is a linear boolean function: it returns 1 for an odd number of operand “1”

⊕m c

k

x ⊕ 0 = x

x ⊕ x = 0

11

 XOR is a linear boolean function: it returns 1 for an odd number of operand “1”
(0⊕1=1⊕0=1) and 0 for an even number of operand “1” (0⊕0=1⊕1=0).

 If c = m ⊕ k then m = c ⊕ k.

Proof: c = m ⊕ k = (c ⊕ k) ⊕ k = c ⊕ (k ⊕ k) = c ⊕ 0 = c.

 XOR performs as (but is not) a random function.

Proof: let p1= p(x=1)=p(y=1) and p0= 1-p1=p(x=0)=p(y=0). By definition of the XOR

operation we set p(z=0)=p0p0+p1p1 and p(z=1)=p0p1+p1p0. Setting p(z=0)=p(z=1) replacing

p0= 1-p1 and solving for p1, the unique solution p0 =p1= 0.5 is obtained. This property does

not hold for the other Boolean operators AND and OR.

 XOR is the basic ciphering unit for any developed (block) cipher.

Vincent Rijmen, Joan Daemen (Rijndael), 2001

 Advanced Encryption Standard (AES) is a specification for the encryption of
electronic data established by the U.S. National Institute of Standards and
Technology (NIST) in 2001 with standard FIPS-197.

 Rijndael is a family of ciphers with different key and block sizes.

 For AES, NIST selected three members of the Rijndael family, each with a block
size of 128 bits, but three different key lengths: 128, 192 and 256 bits.

 AES has been adopted by the U.S. Government and is now used worldwide.

Advanced Encryption Standard

12

 AES has been adopted by the U.S. Government and is now used worldwide.

 AES supersedes the Data Encryption Standard (DES), 1977.

The Design of Rijndael: AES - The Advanced Encryption Standard

J. Daemen, V. Rijmen

Ed. Springer, ISBN 978-3-662-04722-4, 2002

https://autonome-antifa.org/IMG/pdf/Rijndael.pdf

 AES is based on the S-P design principle, fast in both software and hardware.

 AES operates on a 4 × 4 column-major order matrix of bytes, termed the state.

 AES calculations are done in GF(28)/x8+x4+x3+x+1.

 The key size used for an AES cipher specifies the number of repetitions of
transformation rounds that convert the plaintext into the ciphertext.

 The number of cycles of repetition are as follows:

– 10 cycles of repetition for 128-bit keys.

– 12 cycles of repetition for 192-bit keys.

Advanced Encryption Standard

13

– 14 cycles of repetition for 256-bit keys.

AES Encryption / Decryption Schemes

14

Animated AES ciphering

Advanced Encryption Standard

 KeyExpansion – round keys are derived from the cipher key using the ”Rijndael

key schedule”: it takes a 128-bit key (4 words 32-bit each) and expands into an

array of 44 words 32-bit each.

 Initial round key addition:

– AddRoundKey – each byte of the state is combined with a byte of the round key

using bitwise XOR.

 9, 11 or 13 rounds:

– SubBytes – a non-linear substitution step where each byte is replaced with another

according to a lookup table.

15

according to a lookup table.

– ShiftRows – a transposition step where the last three rows of the state are shifted

cyclically a certain number of steps.

– MixColumns – a linear mixing operation which operates on the columns of the state,

combining the four bytes in each column.

– AddRoundKey

 Final round (making 10, 12 or 14 rounds in total):

– SubBytes

– ShiftRows

– AddRoundKey

AES – Rijndael Key Schedule

16

AES – SubBytes step
 In the SubBytes step, each byte in the state is replaced with its entry in a fixed 8-

bit lookup table S (elements in GF(28) are 8-bit length).

 In the SubBytes step, each byte aij in the state array is replaced with

a SubByte S(aij) using an 8-bit substitution box. This operation provides the non-

linearity in the cipher combining the multiplicative inverse in GF(28) and an

affine transformation. S(aij) is computed as follows: given aij, search along x-axis

the row corresponding to its most significant 4 bits (016-f16) and along y-axis the

column corresponding to its less significant 4 bits (016-f16). E.g. S(5316) = ed16.

17

[NIST-FIPS-197]

AES – ShiftRows step
 In the ShiftRows step, bytes in each row of the state are shifted cyclically to the

left. The number of places each byte is shifted differs incrementally for each

row. It operates on the rows of the state; it cyclically shifts the bytes in each

row by a certain offset.

– The first row is left unchanged. Each byte of the second row is shifted one to the

left. Similarly, the third and fourth rows are shifted by offsets of two and three

respectively.

 In this way, each column of the output state of the ShiftRows step is

composed of bytes from each column of the input state

18

composed of bytes from each column of the input state.

 The importance of this step is to avoid the columns being encrypted

independently, in which case AES degenerates into four independent block

ciphers.

AES – MixColumns step

 In the MixColumns step, the four bytes of each column of the state are

combined using an invertible linear transformation.

 The MixColumns function takes four bytes as input and outputs four bytes,

where each input byte affects all four output bytes. Together

with ShiftRows, MixColumns provides diffusion in the cipher.

 During this operation, each column is transformed using the fixed matrix c.

Matrix multiplication is composed of multiplication and addition in

GF(28)/x8+x4+x3+x+1.

19

⋅

=

j3

j2

j1

j0

j3

j2

j1

j0

a

a

a

a

2113

3211

1321

1132

b

b

b

b

AES – AddRoundKey step

 In the AddRoundKey step, the subkey is combined with the state. For each

round, a subkey is derived from the main key using Rijndael's key schedule;

each subkey is the same size as the state. The subkey is added by combining

each byte of the state with the corresponding byte of the subkey using

bitwise XOR.

20

Security of AES
 The National Security Agency (NSA) reviewed all the AES finalists, including

Rijndael, and stated that all of them were secure enough for U.S. Government
non-classified data.

 In June 2003, the U.S. Government announced that AES could be used to
protect classified information:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192
and 256) are sufficient to protect classified information up to the SECRET level.
TOP SECRET information will require use of either the 192 or 256 key lengths.

21

 There is currently no analytical attack from conventional computing against AES
known which has a complexity less than a brute-force attack.

Block Cipher modes of operation
 A mode of operation describes how to repeatedly apply a cipher's single-block

operation to securely transform amounts of data larger than a block

– CBC – Cipher Block Chaining

– CTR – Counter

– ECB – Electronic Codebook

– CFB – Cipher Feedback

– OFB – Output Feedback

22

CBC mode

 Encrypt (E)

E

P1

C1

K

+

E

P2

C2

K

+

E

P3

C3

K

+

E

PN

CN

K

+IV CN-1

…

23

 Decrypt (D=E-1)

D

C1

P1

K

+IV

D

C2

P2

K

+

D

C3

P3

K

+

D

CN

PN

K

+CN-1

Properties of the CBC mode
Ehrsam, Meyer, Smith and Tuchman, 1976

 Initialization Vector (IV) is a fixed-size pseudorandom value.

 Ciphertext block Cj depends on Pj and all preceding plain-text blocks.

 The i-th block cannot be decrypted independently of the others.

– not parallelizable

– no random access

 The IV should be encrypted to avoid malicious modifications by an attacker to
make predictable changes to the first plain-text block recovered.

24

make predictable changes to the first plain

 Decrypting with the incorrect IV causes the first block of plain-text to be corrupt
but subsequent plain-text blocks will be correct because each block is XORed
with the cipher-text of the previous block, not the plain-text. As a
consequence, decryption can be parallelized.

 A one-bit change to the cipher-text causes complete corruption of the
corresponding block of plain-text, and inverts the corresponding bit in the
following block of plain-text (vulnerability to Padding Oracle attack).

 CBC is commonly used mode of operation: main drawbacks are that encryption
is sequential (i.e., encryption cannot be parallelized), and that the message
must be padded to a multiple of the cipher block size.

CTR mode

 Encrypt (E) Decrypt (D=E)

EK

(n)

(n)

(n)

counter + i

(n)

DK

(n)

(n)

(n)

counter + i

(n)

25

Pi
Ci+

(n) (n)
Ci

Pi+
(n) (n)

Properties of the CTR mode
Diffie, Hellman 1979.

 CTR mode uses a counter rather than an IV (with non-repeating requirement)
or equivalently the IV contains a counter.

 Cycle 2n length depends on the size of the counter.

 The i-th block can be decrypted independently of the others

– parallelizable

– random access

26

 The values to be XORed with the plaintext can be precomputed.

 CTR encrypts as decrypts.

 At least as secure as the other modes: along with CBC, CTR mode is one of two
block cipher modes recommended by Niels Ferguson and Bruce Schneier.

 CTR mode is well suited to operate on a multi-processor machine, where
blocks can be encrypted in parallel. If the IV/nonce is random, then they can be
combined with the counter using any invertible operation (concatenation,
addition) to produce the actual unique counter block for encryption. In case of
a non-random nonce (such as a packet counter), the nonce and counter should
be concatenated (not XORed).

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

27

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Hash Functions

 An Hash Function maps bit strings of arbitrary finite length to bit strings of fixed
length (n bits).

 The values returned by a hash function are called hash values, hash codes,
digests, or simply hashes.

 Hash value of a message serves as a compact representative image of the
message (fingerprint of the message).

 Many-to-one mapping collisions are unavoidable but VERY RARE:

E.g. for a 128 bit hash function, there 2128 possible outputs (≈ 3.4⋅1038): “only”
after k ≈ 2.6 ⋅1010 attempts the probability of at least one collision is ε = 10-18

28

after k ≈ 2.6 ⋅10 attempts the probability of at least one collision is ε = 10
(derived from the Birthday Paradox Problem).

message of arbitrary length

fix length

hash value / message digest / fingerprint

hash

function

Structural Requirements of Hash Functions
 Ease of computation

– Given an input x, the hash value H(x) should be a low complexity algorithm.

 One-way property (inverse image or preimage resistance)

– Given a hash value y, to find any input x s.t. H(x) = y should be a
computationally infeasible.

 Weak collision resistance (2nd preimage resistance)

– Given an input x, it should be computationally infeasible to find a second
input x’ such that H(x’) = H(x).

 Strong collision resistance (collision resistance)

29

 Strong collision resistance (collision resistance)

– It should be computationally infeasible to find any two distinct inputs x and
x’ such that H(x) = H(x’).

The compliance to easy computation and one-way requirements makes hash
functions suited for cryptosystems (in this case are denoted as cryptographic
hash functions).

Iterated Hash Functions
 Input is divided into fixed length blocks x1, x2, …, xL (last block padded if

necessary).

 f is called the compression function, cv the compressed vector (f maps an input
x of arbitrary finite bit length, in this case n+b, to an output h(x) of fixed bit
length n).

 Each stage of an iterated hash function compresses a block.

 The compression of the last stage returns the hash of the input.

 Each input block is processed according to the following scheme:

30

 Each input block is processed according to the following scheme:

x1

IV=CV0

(b)

(n) (n)

CV1

f

x2

(b)

(n)

CV2

f

x3

(b)

(n)

CV3

f

xL

(b)

(n)
h(x) = CVL

f

CVL-1

…

Secure Hash Algorithm
 Secure Hash Algorithm (SHA) is a family of Cryptographic Hash functions

published by the National Institute of Standards and Technology (NIST) as a
U.S. Federal Information Processing Standard (FIPS).

 Corresponding standard is FIPS 180-4 Secure Hash Standard (SHS) (2015). It
specifies secure hash algorithms - SHA-1, SHA-224, SHA-256, SHA-384, SHA-
512, SHA-512/224 and SHA-512/256. However on March 2023, NIST has
released a Planning Note saying that after two rounds of public comment, NIST
has decided to revise FIPS 180-4.

31

Key Derivation Function
 Key Derivation Functions (KDF) are particular hash functions.

 It derives one or more secrets from a shared secret value.

 It is typically used to stretch keys into longer keys or to obtain keys of a required
format.

 KDF(SS) = (k1,k2) where c = Ek1(m) and t = MACk2(c): it is used when different keys
for encryption and authentication are needed.

 KDFs are often used as components in KEPs.

KDF1 2 3 4 are standardized in ISO/IEC 18033 2

32

 KDF1-2-3-4 are standardized in ISO/IEC 18033-2.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

33

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Message Authentication Codes (MACs)
 MAC is a specific application of cryptographic hash functions.

 MAC functions are hash functions with two functionally distinct inputs: a
message and a secret key.

 This hash produces a fixed size output called the MAC.

 From the properties of cryptographic hash functions:

– it should be computationally infeasible to produce a correct MAC for a
message without the knowledge of the secret key.

– it should be computationally infeasible to find any two distinct inputs x and
x’ such that H(x) = H(x’).

34

x’ such that H(x) = H(x’).

 MAC functions are often used to implement data integrity services.

message of arbitrary length

fix length

MAC

MAC

function secret key

MAC generation and verification

MAC
message MAC

g
e

n
e

ra
ti

o
n

secret key

35

MAC
message MAC

ve
ri

fi
ca

ti
o

n

secret key
compare

yes/no

Structural Requirements of MAC functions
The same for hash functions plus “Key non-recovery” requirement.

 Ease of computation

– Given an input x and a key k, the hash value MACk(x) should be a low
complexity algorithm.

 One-way property (inverse image or preimage resistance)

– Given a hash value y and a key k, to find any input x s.t. MACk(x) = y should
be a computationally infeasible.

 Weak collision resistance (2nd preimage resistance)

Given an input x and a key k, it should be computationally infeasible to find

36

– Given an input x and a key k, it should be computationally infeasible to find
a second input x’ such that MACk(x’) = MACk(x).

 Strong collision resistance (collision resistance)

– It should be computationally infeasible to find any two distinct inputs x and
x’ and the same key k such that MACk(x) = MACk(x’).

 Key non-recovery

– it should be computationally infeasible to recover the key k, given one or
more pairs (xi, MACk(xi)) for that k.

CBC-MAC vs. CMAC

E

m1

k

+

E

m2

k

+

E

m3

k

+

E

mN

cN

k

+IV=0 cN-1

…

c1 c2 c3

t = CBC-MACk(m)
N21 m||...||m||mm =

length of mi depends on E

37

 It’s a technique for constructing a MAC from a block cipher in CBC mode.

 If the block cipher E is secure (e.g. AES) then CBC-MAC is proven to be secure
for fixed-length messages (N blocks mi).

 CMAC (Cipher-based MAC) is recommended by NIST for variable-length

messages and fixes security vulnerability of CBC-MAC applied to variable-length

messages, even if it requires more keys.

 KDF(SS) = (k1,k2) where c = AESk1(m) and t = AES-CBC-MACk2(c) or t = CMACk2(c)

 AES-CCM provides both encryption and authentication using the AES block
cipher. This is a widely used mode since it requires only a single cryptographic
primitive. That primitive is used in two different modes: CBC and CTR mode.
The following shows how AES-CCM generally works:

– AES-CBC mode (AES-CBC-MAC) is used to generate a nice "authentication
tag". If a single byte changed anywhere in the data fed into the AES-CBC
block, the final output will differ.

– AES-CTR mode is used for the actual data encryption. Note AES-CTR
encryption and decryption is the same operation, as AES-CTR is basically
generating a unique "pad" we XOR with the data.

AES-CCM mode

38

generating a unique "pad" we XOR with the data.

 Additional usage information:

– A nonce format is required for AES-CTR. This nonce can be based on
information in the packet, such as source address, or be random.

– An IV is required for the AES-CCM block. This IV can be sent (possibly
encrypted) to the AES-CCM block, or be part of secret information stored in
the bootloader.

 A minor variation of CCM, called CCM*, is used in the Zigbee standard. CCM*
includes all of the features of CCM and additionally offers encryption-only
capabilities.

AES-CCM mode
 encrypt

AES

Pi-1
Ci-1

K

+

(n)

(n)

(n)

counter + (i-1)

(n)

AES

Pi
Ci

K

+

(n)

(n)

(n)

counter + i

(n)

AES

Pi+1
Ci+1

K

+

(n)

(n)

(n)

counter + (i+1)

(n)

AES

Pr
Cr

K

+

(n)

(n)

(n)

counter + r

(n)

39

AESk

+

AESk

+

AESk

+

AES

tag

k

+

…

yi-1 yi yi+1

expected tag = CBC-MACk(Pi-1|Pi|Pi+1…|Pr)

AES-CCM mode
 decrypt

AES

Pi-1
Ci-1

K

+

(n)

(n)

(n)

counter + (i-1)

(n)

AES

Pi
Ci

K

+

(n)

(n)

(n)

counter + i

(n)

AES

Pi+1
Ci+1

K

+

(n)

(n)

(n)

counter + (i+1)

(n)

AES

Pr
Cr

K

+

(n)

(n)

(n)

counter + r

(n)

40

AESk

+

AESk

+

AESk

+

AES

tag

k

+

…

yi-1 yi yi+1

computed tag = CBC-MACk(Pi-1|Pi|Pi+1…|Pr)

 The “computed tag" and “expected tag" are compared together, and only if
they match is the decrypted data used. A change of any of the data blocks OR
the header would change the calculated tag, resulting in an error.

 Some nice features of AES-CCM:

– Can decrypt any data block, or decrypt blocks out of order due to AES-CTR
usage.

– Authentication Tag provides authentication that data has not been
modified in transit.

– Auth tag can include non-encrypted information, such as a header with

AES-CCM mode

41

– Auth tag can include non encrypted information, such as a header with
address or length information.

– Auth tag can be shortened (i.e., not full 16-byte length) for use with
protocols with very sensitive length limitations.

HMAC

 A keyed-Hash Message Authentication Code (HMAC) is a technique for
constructing a MAC from a cryptographic iterated hash function H() in
combination with a cryptographic key (FIPS-PUB 198-1)

 HMAC is denoted as HMAC-<name of hash function>

– e.g., HMAC-SHA-1, HMAC-SHA-2, HMAC-SHA-256.

 K' = K if |K| = block_size

 K' = K + zero padding if |K| < block_size

K' = H(K) if |K| > block size, therefore |H(K)| = block_size

42

 K' = H(K) if |K| > block size, therefore |H(K)| = block_size

 m the message to be authenticated with |m| = block_size

 ipad (inner pad) = 00110110 repeated block_size/8 times

 opad (outer pad) = 01011100 repeated block_size/8 times

 ⊕ is the XOR operator

 || is the chain operator

HMACK’(m) = H((K’⊕opad)||H((K’⊕ipad)||m))

HMAC

K’ ⊕ ipad

CV0

f

m1

f

m=mL||padding1

f

CV1
inner

…

H()

H((K’⊕ipad)||m)

43

K’ ⊕ opad

CV0

f

H((K’⊕ipad)||m||padding2)

f

CV1
outer

HMACK’(x)=H((K’⊕opad)||H((K’⊕ipad)||m))

H()

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

44

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Digital Signatures
 DS is used for the authentication and non-repudiation of message origin

(sender).

 DS is based on public-key cryptography.

– private key PRKA of the signer A defines a signing transformation S

• S(m, PRKA) = σ
– public key PUKA of the signer A defines a verification transformation V

• V(m, PUKA) = σ is true then “signature accepted”

45

• V(m, PUKA) = σ is false then “signature refused”.

 DS protocols must satisfy these properties:

– Completeness: if S is true, the honest verifier will be convinced of this fact.

– Soundness: if S is false, no cheating prover can convince the honest verifier
that it is true.

– Zero-knowledge: if S is true, no cheating verifier learns anything other than
this fact.

Summary

KDFHMACKey

Hash

SHA
Shared Secret

46

Block Cipher

CBC, CTR

modes
CCM

mode

MACMACMACCBC-MAC

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

47

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Key Establishment Protocols
 A Key Establishment Protocol (KEP), or Key Agreement Protocol, among parties

generates a ciphering key shared among parties (shared secret) by exchanging
information which does not reduce uncertainty on the generated ciphering
key: H(K|exchanged information for Key Generation) ≈ H(K)

 Key Establishment reduces to Key Distribution when a trusted party directly and
autonomously generates and distributes the secrets associated to be shared
among parties (not suitable for WSN).

48

Key Establishment = Key Transport + Key Processing (Key Generation)

 Requirements for KEPs in a WSN are:

– Key Transport: should be based on a state machine as simpler as possible,
(req/conf or 2-phase), better if stateless (1-phase without confirmation)
robust against topology changes, independent on communication patterns
and key types.

– Key Processing: should be as lighter as possible for energy constrained
devices.

The Need of KEPs
 Trusted Key Distribution Center (KEP reduces to a KDP, Key Distribution

Protocol)

– Ciphering keys are not generated by the parties but by a (trusted) third
party.

– Parties ask KDC for a key.

– Access Point can relay requests to KDC but it becomes a single point of
failure.

– However ciphering keys must be transmitted by TTP over a secure link: a
preloaded network key should considered for the start-up: this represents a

49

preloaded network key should considered for the start-up: this represents a
vulnerability (spoofing threat).

 TKDC can be considered only if TTP can be authenticated i.e. the TKDC should
sign the generated ciphering key and the receiver party should verify sender
authenticity (sender integrity).

 Pure ad-hoc networks need KEPs to self generate shared ciphering keys.

 Hybrid ad-hoc networks (with Access Point) can employ a KDP for shared
ciphering keys.

Key Authentication Problem
 A certificate C (containing the credentials) binds a name A to the key K and a

lifetime T and is represented as a triple C = (A, K, T).

 A trusted entity is the only legitimated authority to generate credentials and to
release signed certificates.

 Trusted entities can be

– Key Distribution Centers for the generation and distribution of
authenticated secrets in symmetric key schemes.

– Public Key Generators (Certification Authorities) for the generation of
authenticated public keys in asymmentric key schemes

50

authenticated public keys in asymmentric key schemes.

– Private Key Generators for the generation of authenticated private keys in
(asymmetric) identity-based schemes.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

51

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Symmetric-key Scheme

 Symmetric-key scheme for encryption/decryption

– Shared Secret (SS) = K’ = K

E Dm

plaintext

K=SS

encryption key

K’=SS

decryption key

EK(m)

ciphertext
DK’ (EK(m)) = m

attacker

52

– Shared Secret (SS) = K’ = K

 Each party shares the secret K generated by a suited KEP.

 A good symmetric key scheme should avoid:

– key preload on the party

– key transmission over unsecure channels.

 Here shared secret management is a vulnerability

Classic Symmetric KEPs for WSN
 Probabilistic Key Establishment Protocols

– Random Key Pre-Distribution scheme

L. Eschenauer, V.Gligor, “A Key Management Scheme for Distributed Sensor
Networks,” Proc. of the 9th ACM Conference on Computer and
Communication Security, pages 41-47, 2002

– q-composite rand key pre-distribution

H. Chan, A. Perrig, D. Song, “Random Key Predistribution Schemes for
Sensor Networks,” Proc. of the 2003 IEEE Symposium on Security and
Privacy, pages 197-213, 2003

53

Privacy, pages 197-213, 2003

 Deterministic Key Establishment Protocols

– Polynomial based key pre-distribution

R.Blom, “An Optimal Class of Symmetric Key Generation Systems,” Proc. of
EUROCRYPT, pages 335–338, 1984

C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung,
“Perfectly-Secure Key Distribution for Dynamic Conferences,” Proc of
CRYPTO, pages 471–486, 1992

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

54

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Asymmetric-key Scheme

E Dm

plaintext

PUK

(public) encryption key

PRK

(private) decryption key

EK(m)

ciphertext
DK’ (EK(m)) = m

attacker

S Vm

plaintext

s=σK’(m)

signature
vK(m,s) is true if σK’(m) =s

55

 Asymmetric-key scheme for encryption/decryption/signature.

– PRK is private (i.e. secret), PUK is public

– PUK=f(PRK), f one-way function: as PRK=f-1(PUK), secrecy of PRK relies on
the hardness of the inverse problem f-1

 An authority that assigns private / public keys is needed. Encryption and
decryption are generally energy consuming functions.

PRK

(private) signing key

PUK

(public) signing key

attacker

Asymmetric-key Scheme: RSA

 RSA key generation

– Given p, q secret primes, e.g. p=3 and q=11

– Compute n = pq, e.g. n = 3⋅11=33, n is public

– Compute ϕ(n) = (p−1)(q−1), ϕ(n) is public, e.g. ϕ(33) = 2⋅10 = 20

– Choose an integer e such that 1 < e < ϕ(n) and gcd(e, ϕ(n)) = 1, i.e. e and ϕ(n)
are coprime. Public key (or public exponent) is e, e.g. 7, Public key = 7.

– Determine d as d ≡ e−1 mod ϕ(n) or d⋅e mod ϕ(n) = 1. Private key (or private
exponent) is d, e,g, d = 3 (7⋅3 mod 20 = 1). Private key = 3.

56

 RSA encryption and decryption

– Suppose the plaintext message is m =15

– Encryption: c=me mod n, c = 157 mod 33 = 27

– Decryption: m=cd mod n, m = 273 mod 33 = 15

 To avoid RSA encryptions / decryptions, the sender party can generate and
encrypt a pseudorandom as a new shared secret, transmit it the receiver party
which decrypts it. Now a symmetric scheme is obtained.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

57

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Identity-Based Encryption and Signature
 Identity-Based Encryption (IBE) and Identity-Based Signature (IBS) are an old

idea originally proposed by Adi Shamir, co-inventor of the RSA Algorithm, in
1984.

 Driving concepts:

– Public key is based on public domain parameters (e.g. mail address).

– Private key is generated on request by a Trusted Third Party (Private Key
Generator).

– No need of a Certification Authority: each party can execute an
Authentication Check for its own private key.

58

Authentication Check for its own private key.

 Vulnerabilities:

– Key Escrow Problem

– Private Key transmission over unsecure channels

A. Shamir, Identity-Based Cryptosystems and Signature Schemes

Proceedings of Crypto 1984 on Advances in Cryptology, pp. 47-53

https://discovery.csc.ncsu.edu/Courses/csc774-S08/reading-assignments/shamir84.pdf

Basic concepts of IBE
 The sender Alice can use the receiver's public key which can be directly known

(without a CA) by the interested parties to encrypt a message: it can be an
email address or a vehicle plate.

 The receiver Bob obtaines a private key PRKBob from the TTP Private Key
Generator (PKG) or and can decrypt the received ciphertext. PRK can be
preloaded at Bob’s side.

 An IBE scheme can be described with the following steps.

1. Setup: The PKG generates its private key PRKPKG and its public (or master) key

59

PUKPKG pair (note that PUKPKG is publicly known).

2. Private Key Generation: The receiver Bob authenticates himself to PKG and
obtains an authenticated private key PRKBob. Bob performs a Private Key
Authentication Check to verify if ê(PRKBob, G) = ê(IDBob, Master Key) holds.

3. Encryption: Using Bob's identity IDBob (=PUKBob) and PUKPKG (master key), the
sender Alice encrypts her plaintext M and obtains a ciphertext C.

4. Decryption: Upon receiving the ciphertext C from Alice, Bob decrypts it using his
private key prikBob and the Master Key to recover the plaintext M.

 The signer Alice first obtains a signing PRKAlice from PKG. She then signs a
message using this signing key.

 The verifier Bob uses Alice's IDA (= PUKAlice) to verify Alice's signature. No needs
for Bob to get Alice's certificate.

 An IBS scheme can be described using the following steps.

Basic concepts of IBS

1. Setup: The PKG generates its private key PRKPKG (or Master Secret) and its public
key PUKPKG (or Master Key) pair (note that PUKPKG is publicly known).

60

2. Private Key Generation: The signer Alice authenticates herself to PKG and
obtains an authenticated private key PRKAlice associated with her identity IDAlice.
Alice performs a Private Key Authentication Check to verify if ê(PRKAlice, G) =
ê(IDAlice, Master Key) holds.

3. Signature Generation: Using her private key PRKAlice, Alice creates a signature σ
on her message M.

4. Signature Verification: Having obtained the signature σ and the message M
from Alice, the verifier Bob checks whether σ is a genuine signature on M using
Alice's identity IDAlice and the Master Key PUKPKG. If it is, he returns “Accept”,
otherwise, he returns “Reject”.

The Private Key Generator

PKG

PRKPKG (Master Secret)
s =

Request for Private Key

18723619236163781872361923616378

Parameters: E, G, ê

Hash function:

r: order of E

{ } E1,0:H
m

1 →

61

PKG uses master secrets to generate keys:

 The Master Secret is picked up randomly: s∈(1, r-1)

 The Master Key is generated from the Master Secret: sG

 The Public Key of Bob is IDB = bob@b.com

 The Private Key of Bob is generated by PKG from its Master Secret and Bob
Identity: sH1(IDB)

Request for Private Key

for IDB = bob@b.com

r: order of E

Bob performs the

Private Key

Authentication

ChecKBob

IBE Private Keys
Private Key Authentication Check

After receiving the Private Key from the PKG, the party can
execute this check:

ê(Private Key, G) = ê(Identity, Master Key)

If successful, then the binding between

62

Proof: from the pairing property ê(sA,B)=ê(A,sB) is

ê(sH(ID),G)=ê(H(ID),sG)

If successful, then the binding between

user’s Private Key issued by PKG and user’s identity

is authenticated.

.

How IBE works in practice
Alice sends a Message to Bob

PKG

Requests an

authenticated

2 Receives

a Private Key

3

IDBob=bob@b.com

Master Key = pubkPKG

63

bob@b.com

Alice encrypts with

bob@b.com

1

authenticated

private key
for bob@b.com

Authentication

Check

Bob decrypts with

his Private Key

4

alice@a.com

bob@b.com

How IBE works in practice
Alice sends a Message to Bob

PKG

Fully off-line - no connection to server required

64

bob@b.com

Charlie encrypts

with bob@b.com

1

Bob decrypts with

his Private Key

2

bob@b.com

charlie@c.com

How IBS works in practice
Alice signs a Message to Bob

PKG

Requests an

authenticated

private key
Receives

Private Key

2

IDAlice=alice@a.com

Master Key = PUKPKG

65

bob@b.com

Alice signs with her

Private Key

3

private key a Private Key

for alice@a.com

Authentication

Check

Bob verifies with

alice@a.com

4

alice@a.com

IBE using Weil pairing

Parameters: E, G (gen. in E(GF()), ê, hash functions H1 and H2:

Setup: Bob’s public key is KB = H1(IDB).

PKG has private key s∈(1,r-1), r order of E, and Master Key sG.

PKG computes Bob’s private key sKB.

Encryption: To send M, Alice selects a random r∈(1,q-1) and computes

R = rG and c = M ⊕ H2(ê(KB, sG)r). She sends Bob (R, c).

{ }
{ }m

2

m
1

1,0()GF:H

E1,0:H

→

→

66

Decryption: Bob uses his private key sKB and the Master Key sG to compute

c ⊕ H2(ê(sKB,R)) = c ⊕ H2(ê(sKB, rG)) = c ⊕ H2(ê(KB, sG)r) = M.

Anyone other than Bob wishing to decrypt the message from (R, c) needs to be

able to compute ê(KB, sG)r = ê(KB, G)rs given G, KA, S, and R. This requires solving

the bilinear Diffie-Hellman problem.

Identity-Based Encryption from the Weil Pairing

D. Boneh, M. Franklin

Proceedings of Crypto 2001, pp. 213-229, Springer-Verlag, 2001

http://courses.cs.vt.edu/~cs6204/Privacy-Security/Papers/Crypto/IBE-Weil-Pairing.pdf

IBS using Weil pairing
(ISO/IEC 14888-3:2018)

Parameters: E, G (gen. in E(GF)), ê, hash functions H1 and H2:

Setup: Alice’s public key is KA = H1(IDA).

PKG has private key s∈(1,r-1), r order of E, and Master Key sG.

PKG generates Alice’s private key sKA.

Sign: To send M, Alice selects a random k∈(1,q-1) and computes

T = ê(sKA,G)k, h = H2(m,T), S = (k-h)sKA. She sends Bob (h,S).

{ }
{ }m

2

m
1

1,0()GF:H

E1,0:H

→

→

67

Verification: Bob uses Alice’s public key KA and the Master Key sG to compute

T = ê(S,G)ê(KA,sG)h

= ê(ksKA,G)ê(-hsKA,G)ê(KA,sG)h

= ê(sKA,G)kê(sKA,G)-hê(sKA,G)h

= ê(sKA,G)k

if H2(m,T)=h then accept, otherwise refuse.

Efficient Identity-Based Signature Schemes based on Pairings

F. Hess

Proceedings of Selected Areas in Cryptography (SAC 2002), pp. 310-324, Springer-Verlag, 2002

https://link.springer.com/content/pdf/10.1007/3-540-36492-7_20.pdf

Open issues with IBE and IBS
 Key Escrow Problem (deposito chiavi). Identity-based cryptographic schemes

have inherent weakness, a “key escrow" property: recall that in IBE and IBS
schemes, the PKG issues private keys for user using its (public) Master Key. As
a result, the PKG is able to decrypt or sign any messages.

In terms of encryption, this property might be useful in some situations where
user's privacy can possibly be limited, for example, due to the involvement in
the crime, the user's message should be opened by a court order. However, in
terms of signature, key escrow property is not desirable at all since “non-
repudiation" property is one of the essential requirement of digital signature
schemes (non repudiation means that only an entity which possesses a signing

68

schemes (non-repudiation means that only an entity which possesses a signing
key can create a valid signature).

– As a possible countermeasure against key escrow problem, given a set of
PKGs, each PKG’s Master Key could be distributed using Shamir's secret
sharing technique into the other PKGs: in this way any single PKG cannot
known its own Master Key unless other PKGs agree as well.

 Generated private key are transmitted over unsecured channels.

– As a possible countermeasure, private keys can be preloaded. In this case
the Private Key Authentication Check can be useful to reveal private key
compromissions / alterations

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

69

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Hybrid Encryption

 Hybrid encryption:

– Asymmetric mechanism for the generation of a shared symmetric key.

No asymmetric encryptions or decryptions at all.

E Dm

plaintext

SS=ss(PRK,PUK)

encryption key

SS=ss(PRK,PUK)

decryption key

ESS(m)

ciphertext
DSS(ESS(m)) = m

attacker

70

– No asymmetric encryptions or decryptions at all.

– A shared secret is directly generated by the parties using their private /
public keys.

– Therefore Shared Secret SS = g(PRK,PUK) where g() is a one-way function.

Diffie-Hellman Key Exchange
 DHKE is a 2-phase KEP: let g be a generator in GF(p), a,b, K ∈GF()

– Alice: Private Key = pA = a, Public Key = PA = ga

– Bob: Private Key = pB = b, Public Key = PB = gb

– Alice computes KAB = (gb)a and Bob computes KBA = (ga)b

– Shared Secret = K = gab and then Alice sends the ciphered message c

ga

b

71

 Solving ga for a or gb for b is called the Discrete Logarithm Problem (DLP) or DH
Problem: infact is a=logg(g

a) or b=logg(g
b) where a,b∈GF().

 Main vulnerability of 2-phase schemes is the “Man in Middle” threat: Charlie can
be between Alice and Bob and create separate link with them and share Shared
Secrets with them and neither Alice or Bob can know this.

gb

Ephemeral Diffie-Hellman Key Exchange
 EDHKE is 1-phase KEP: let g be a generator in GF(q), a,b,α ∈1, 2, .., q-1, K∈GF(q)

– α is a pseudorandom generated by Alice

– Alice: Private Key = pA = a, Ephemeral Public Key = PA = gαa

– Bob: Private Key = pB = b, Public Key = PB = gb

– Alice computes KAB = (gb)αa = gαab

– Shared Secret = K = gαab and then Alice sends the cryptotext ciphered using K

– Bob computes KAB = (gαa)b = gαab

cryptotext, gαa

72

 Solving gαa for αa is again a Discrete Logarithm Problem (DLP) or DH Problem, but
the pseudorandom factor α hides the solution for a.

 Now the “Man in Middle” threat is not possible anymore: Charlie cannot create
separate link with them because he cannot share the Shared Secret.

cryptotext, gαa

ECC Diffie-Hellman Key Exchange
 ECDHKE and ECEDHKE extends DHKE and EDHKE to ECC. Let G be a generator in

EC(), a,b,α ∈1, 2, .., p-1, K∈GF(p)

– Alice: Private Key = pA = a, Public Key = PA = aG, Ephemeral Public Key = PA = αaG,

– Bob: Private Key = pB = b, Public Key = PB = bG

 ECDHKE: Shared Secret = K = abG, ECEDHKE: Shared Secret = K = αabG

 The EC Discrete Logarithm Problem (ECDLP) replaces DLP:

– EC Point Addition (P+Q) replaces element product (pq) in GF(p)

– EC Point Doubling (2G) replaces element squaring (g2) in GF(p)

– ECDLP replaces DLP with the same complexity.

73

– ECDLP replaces DLP with the same complexity.

aG

bG

cryptotext, αaG

IES / DSA vs. ECIES / ECDSA
 ECC allows Diffie-Hellman Key Exchange to be implemented over WSN:

– ECDLP replaces DLP with the same complexity

– DH security relies on the Discrete Logarithm Problem

– ECDH security relies on Elliptic Curve Logarithm Problem

 IES (Integrated Encryption Scheme) and DSA (Digital Signature Algorithm) due to V.
Shoup

 ECIES and ECDSA are the ECC extension to IES and DSA.

74

A Proposal for an ISO Standard for Public Key Encryption (v. 2.1), 2001

V. Shoup

http://www.shoup.net/papers/iso-2_1.pdf

ECIES pseudocode
Alice (the Encypher): given EC Domain Parameters D=(p,a,b,G,n,h) or

D=(m,a,b,G,n,h), Bob’s public key PB, the message m, return (c,R,t) where c is

the enciphered message (the cipher-text):

1. Select an integer k such that 1 ≤ k ≤ n-1

2. Compute R = kG e Z = hkPB. If Z = 0 go back to 1

3. Compute KDF(zx, rx) = (k1,k2) where zx and rx are x-coordinate of Z and R

4. Compute c = ENCk1(m) and t = MACk2(c)

5. Return (c,R,t)

75

Return (c,R,t)

Bob (the Decipher): given EC Domain Parameters D=(p,a,b,G,n,h) or

D=(m,a,b,G,n,h), Bob’s private key pB, the 3-pla (c,R,t), determine the message

m or refuse:

1. Compute Z = hpBR = (zx,zy). If Z = 0 then “refuse”

2. Compute KDF(zx, rx) = (k1,k2) where zx and rx are x-coordinate of Z and R

3. Compute t’ = MACk2(c). If t ≠ t’ then “refuse”

4. Compute m = DECk1(c)

ECDSA pseudocode

Alice (the Prover): given EC Domain Parameters D=(q,a,b,G,n,h) or

D=(m,a,b,G,n,h), Alice’s private key pA, the message m, compute signature (r,s).

1. Select an integer k such that 1 ≤ k ≤ n-1

2. Compute kG = (x1,y1) and consider r = x1 mod n. If r = 0 go back to 1

3. Compute e = H(m)

4. Compute s = k-1(e+pAr) mod n. If s = 0 go back to 1

5. Return (r,s)

76

Bob: (the Verifier): given EC Domain Parameters D=(q,a,b,G,n,h) or
D=(m,a,b,G,n,h), Alice’s public key PA, the message m and the signature (r,s),
accept or refuse the sign.

1. Verify that 1 ≤ r,s ≤ n-1. If not then “refuse”

2. Compute e = H(m)

3. Compute w = s-1 mod n. Compute u1 = ew mod n. Compute u2 = rw mod n

4. Compute X = u1G+u2PA. If X = 0 then “refuse”

5. Compute v = x1 mod n where x1 is the x-coordinate of X

6. If v = r then “accept” otherwise “refuse”

Cryptography is still secure ?
 Classical Computing: 1 binit → 2 classical states: 0 or 1: voltage low / high

 Quantum Computing: 1 qubit → superposition of 2 quantum states 0 and 1: spin
up / down in electrons, H/V polarization in photons.

 Therefore n qubits in input for an operation in a quantum computer, the result of
2n operations for 2n inputs with just one computational step is returned as
compared to 2n computation steps needed by a classical computer, where n is
the number of electrons / photons !!

 Computation Capacity is improved by a 2n factor (truly parallel computing).

 Post-quantum cryptography refers to public key algorithms that are thought to

77

Post-quantum cryptography refers to public key algorithms that are thought to
be secure against an attack by a quantum computer.

 Up to now, problems such as integer factorization (RSA), DLP (DH) and ECDLP
(ECDH) could be efficiently broken by a sufficiently large quantum computer
running Shor's algorithm.

 NIST includes post-quantum algorithms in Commercial National Security
Algorithm Suite 2.0 and recommends timing for the complete transition from
CNSA v. 1.0 to 2.0 by 2030. The suite includes: AES 256 bit, ECDH and ECDSA with
curve P-384, SHA-2 with 384 bits, Diffie–Hellman key exchange and RSA with a
minimum 3072-bit modulus.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

78

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Authentication of Public Keys
 A Certification Authority (CA) is a trusted party that authenticates public keys (or

private keys), i.e. certifies the binding <identity, key> .

 The CA public key is assumed known by any party.

 Certificates can be explicit, implicit or certificate-less.

 An explicit certificate (X. 509-based) of a public key is the 3-pla:

<pubkuser, IDuser, sigkCA(pubkuser, IDuser)> signed by CA using its prikCA.

Suppose Bob requests Alice’s public key

79

1. Cert(Alice) = (pubkAlice, IDAlice, sigkCA(pubkAlice,IDAlice))

2. Bob verifies pubkAlice using pubkCA

A drawback of explicit certification is the size: standard X.509 certificate is about
1KB

 Similarly for the certification of a private key.

 In an Identity-based scheme, the subject's identity itself is used to derive their
public key; there is no certificate (certificate-less scheme). The corresponding
private key is calculated and issued to the subject by a TTP.

Authentication of Public Keys
 An implicit certificate (e.g. ECQV, EC Qu Vanstone certificate) consists of identification

data (ID) and a single EC point. Any party (say Alice) can compute its own pair
(prKA,pubKA) and any other party (say Bob) can computes pubKA without any
transmission of private keys and CA signatures. ECQV certificates can be considerably
smaller than explicit certificates (useful for resource constrained nets).
Given an EC domain, be n the order of the generator G:

CA
random t,q ∈(1,n-1)

prKCA = t

pubKCA = T = tG

AliceBob
random r∈(1,n-1)

R = rG

IDA

80

pubKCA

Q = qG
A

R, IDA

(D, s)

(D, IDA)

D = Q+R = Cert()

h = H(IDA,D)

s = hq+th = H(IDA,D)

prKA= a = hr+s

pubKA= A = aG
h = H(IDA,D)

pubKA = A = hD+T Proof: A=hD+T=aG

A=aG=(hr+s)G=hrG+(hq+t)G=hR+hQ+T=h(R+Q)+T=hD+T q.e.d.

SEC 4: Elliptic Curve Qu-Vanstone Implicit Certificate Scheme (ECQV).

Standard for Efficient Cryptography. Jan. 2013. Available online: http://www.secg.org/sec4-1.0.pdf

Authentication of Public Keys
Different approaches can be followed:

 Web of Trust: no CA are assumed; it relies entirely on trust a-priori relationships
between parties. If Alice trusts Bob, it is assumed that she also wants to trust all
other users whom Bob trusts. Every party in this WoT implicitly trusts parties
whom it does not know. Sign-encryption schemes should be used.

 Chain of Trust: multiple interoperating CAs are assumed; users communicate
with other whose certificates are issued by different CAs: this requires cross-
certification of CAs, e.g. CA1 certifies the public key of CA2. If Alice trusts her CA1,
cross certification ensures that she also trusts CA2 (“trust is delegated”). This
approach results suited for ad hoc networks that can be parceled into

81

approach results suited for ad-hoc networks that can be parceled into
subnetworks , each subnet referring to a specific CA, e.g. in VANETs that refer
on multiple RAs (Regional trusted Authorities). Chain of trust is also applied for
blockchains.

 Key Material Preloading: an external CA is assumed: CA computes private keys
for each node and the needed public keys and this key material is off-line
preloaded into nodes avoiding requests for public keys towards CA. A dynamic
refresh (to achieve Forward Secrecy) of the keys through nonces should be
performed for any communication session (ephemeral private / public keys).
This approach results suited for large ad-hoc networks.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

82

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Key Management Protocol
 Once a key has been established, the Key Management Protocol (KMP)

manages the key during system life-cycle (e.g. node additions, node deletions,
key refresh, …).

 KMP should work in undefined deployment environment

 KMP should be independent on topology.

 KMP returns useful information to Intrusion Detection System.

 It provides the basic management operations on key material (key
components, configuration parameters, link keys, network keys, …)

Assignment

83

– Assignment

– Revocation

– Updates

 Session keys are shared secrets updated each session

– To limit available ciphertext for cryptanalysis.

– To limit exposure caused by the compromise of a session key.

– To avoid long-term storage of secret keys.

– Need of CSPRNG.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

84

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

TinySEC
 It is the basic KMP over TinyOS.

 It manages link-layer security for WSN.

 It is independent on ciphering algorithms and key establishment protocols.

 It guarantees authenticity, integrity and confidentiality.

 Each service a type of packet format

– TinyOS (No TinySEC)

• No Authentication & No Encryption

85

– TinySEC-AE

• Authentication & Encryption (CBC)

• MAC computed over encrypted data and the packet header

– TinySEC-Auth

• Authentication Only

TinySEC Packet format

TinyOS Packet Format

TinySEC-Auth Packet Format

36 Bytes

37 Bytes

86

IV

TinySEC-AE Packet Format

41 Bytes

TinySEC IV format
 In TinySEC the Initialitation Vector is a counter (not a pseudo-random) → IV

could be reused

– IV too long - add unnecessary bits to the packet

– IV too short – frequent repetitions

 A counter IV repeat after 2n +1, n the bit length of the counter.

 CBC works better with reused IV

8 byte but the Counter in only 2 bytes (16 bits)

87

Security Analysis

Combination of carefully formatted IVs, low data rates and CBC mode for
encryption achieves high confidentiality in TinySEC.

 Message Integrity and Authenticity

– Based on MAC length (4 bytes for TinySEC)

– 1 out 232 chance to guess it

– Adversary must send 232 packets to correctly fake a message

– This is not OK for regular networks but given the low rate data in WSN, this

88

is ok for WSN.

• Even if the adversary flood the channel (suppose 25 kbps), he can send
only 80 forgery attempts/sec (each packet is 40 byte long), s.t. sending
232 would take about 20 months.

• Battery operated nodes do not have that much energy to collect all
those packets.

Security Analysis
 Message Confidentiality

– Security based on IV length, assuming no reuse is 8 byte counter or 16 byte
random

– However, we have an 8 byte total IV

• 2 Destination, 1 AM, 1 Length, 2 Source and 2 Counter

– Therefore IV repeats after 216 packets

• Considering a monitoring application with sample period 1 observation
per minute, IV reuse will not occur before about 45 days (216/(60*24) ≈
45).

89

45).

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

90

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor
Networks (v.2.0)

A. Liu, P. Ning

Proceedings of the 7th International Conference on Information Processing in Sensor
Networks (IPSN 2008), SPOTS Track, pp. 245-256, April 2008.

http://discovery.csc.ncsu.edu/software/TinyECC/TR-2007-36.pdf

TinyECCK: Efficient Elliptic Curve Cryptography Implementation over GF(2m) on 8-bit
MICAz Mote

S. C. Seo, D. Han, H.C. Kim, S. Hong

TinyECC

91

S. C. Seo, D. Han, H.C. Kim, S. Hong

IEICE Transactions on Info and Systems E91-D(5), pp. 1338-1347, May 2008.

https://www.researchgate.net/publication/31467778_TinyECCK_Efficient_Elliptic_Curve_C
ryptography_Implementation_over_GF2m_on_8-Bit_Micaz_Mote

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography for 8-bit AVR-
Based Sensor Nodes

Z. Liu, H.Seo, J.Großschädl, H. Kim

IEEE Transactions on Information Forensics and Security, vol. 11, n.7, pp. 1385-1397, July
2016.

https://orbilu.uni.lu/bitstream/10993/12934/1/ICICS2013.pdf

TinyECC Design Principles
 TinyECC is a sw package over TinyOS for ECC-based KEPs .

– TinyECC is based on GF(p), p prime.

– TinyECCK is based on GF(2n).

 TinyECC includes ECC schemes such as

– Elliptic CurveDigital Signature Algorithm (ECDSA).

– Elliptic Curve Diffie-Hellman (ECDH).

– Elliptic Curve Integrated Encryption Scheme (ECIES).

92

 TinyECC is independent on sensor platform through TinyOS.

Optimization tricks in TinyECC

 Barrett Reduction: integer modular reductions without divisions.

 Hybrid Multiplication: windowed double and add algorithm.

 Use of Projective Coordinates.

 Shamir’s Trick: This optimization is only used for the verification of ECDSA
signatures: the verification of ECDSA signature requires the computation of the
form aP+bQ, where a,b are integers and P,Q are two points on an elliptic curve.

 Curve Specific Optimization: use pseudo-Mersenne primes as specified by NIST
and SECG.

93

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

94

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

TinyIBE Design Principles
 TinyIBE is a sw package over TinyOS for ID-Based Encryption.

– suited for hierarchical (clustered) WSN

– simple variant of the Sakai-Kasahara IBE scheme

– only convergecast (from leaves to CH): no need of PRK/PUK for leaf nodes.

– SS is generated by a leaf node and then shared with its own CH

 off-line (2 phases)

– Setup: P∈E(GF(q)) order r, s∈(1,r-1), Q=sP, g=ê(P,P)

– Extract: assign PUKCH =H1(IDCH), PRKCH=(1/(s+PUKCH))P.

{ }
{ }n

2

*
1

1,0)q(GF:H

Z*1,0:H
q

→

→

95

Pre-load PRKCH into CH nodes; pre-load PUKCH, P,Q, g into leaf nodes.

 run-time (2 phases)

– Encrypt at leaf node: random w, SS=t∈Z*q

compute and send C1=w(Q+PUKCHP), C2=t⊕H2(gw) to CH node

– Decrypt at CH node: SS=t=H2(ê(PRKCH,C1))⊕C2

TinyIBE: Identity-Based Encryption for Heterogeneous Sensor Networks
P. Szczechowiak, M. Collier, 5th International Conference on Intelligent Sensors, Sensor Networks

and Information Processing , 2009

ID-based Cryptosystems with Pairing on Elliptic Curve
R. Sakai, M. Kasahara, Cryptology ePrint Archive, Report 2003/054, 2003.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

96

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

802.15.4 Security
 IEEE 802.15.4 security deals with the security functions provided by the

standard to protect the link layer functions.

 Security functions are:

– Message Confidentiality through AES ciphering.

– Message Integrity through Message Authentication Code (MAC).

 AES algorithm is not only used to encrypt the information but to validate the
data which is sent (Data Integrity) and it is achieved using a MAC (Message
Authentication Code) which is appended to the message.

97

Authentication Code) which is appended to the message.

 This code ensures integrity of the MAC header and MAC payload attached (here
MAC is Media Access Control).

 To avoid confusion, the term Message Authentication Code will be replaced by
the term Message Integrity Code (MIC).

 MIC can have different sizes: 32, 64, 128 bits, however it is always created using
the AES-128 algorithm.

802.15.4 Security
 Recall from Lesson 1 that a coordinator on a PAN can optionally bound its

channel time using a “superframe structure”.

 A superframe is bounded by the transmission of a beacon frame and can have
an active portion and an inactive portion. The coordinator may enter a low-
power (sleep) mode during the inactive portion.

 During the active portion (=CAP+CFP), frames can access the medium.

 4 frame types: BEACON, DATA, ACK and MAC command frame.

 3 fields in the IEEE 802.15.4 MAC DATA frame related to security:

– Frame Control (located in the MAC Header)

98

– Frame Control (located in the MAC Header)

– Auxiliary Security Control (in the MAC Header)

– Data Payload (in the MAC Payload field)

802.15.4 Security
 The Auxiliary Security Frame is enabled if the Security Enabled Bit subfield of the Frame

Control Frame is set to 1. This special header has 3 fields:

– Security Control (1B) specifies which kind of protection is used.

– Frame Counter (4B) is a counter given by the source of the current frame in order to
protect the message from replaying. For this reason each message has a unique
sequence ID represented by this field.

– Key Identifier (0-9B) specifies the information about the key we are using with the
node we are communicating with.

99

802.15.4 Security
 The Security Control is the field where global Security Policy is set: the 0x00 value sets no

encryption so nor the data is encrypted (no data confidentiality) or the data authenticity is
validated. From the 0x01 to 0x03 the data is authenticated using the encrypted Message
Authentication Code (MAC). The value 0x04 encrypts the payload ensuring Data
Confidentiality. The 0x05 to 0x07 range ensures both data confidentiality and authenticity.

0x00 No security. Data is not encrypted.

Data authenticity is not validated.

0x01 AES-CBC-MAC-32 MIC-32 Data is not encrypted.

Data authenticity is validated.

0x02 AES-CBC-MAC-64 MIC-64 Data is not encrypted.

100

Data authenticity is validated.

0x03 AES-CBC-MAC-128 MIC-128 Data is not encrypted.

Data authenticity is validated.

0x04 AES-CTR ENC Data is encrypted.

Data authenticity is not validated.

0x05 AES-CCM-32 AES-CCM-32 Data is encrypted.

Data authenticity is validated.

0x06 AES-CCM-64 AES-CCM-64 Data is encrypted.

Data authenticity is validated.

0x07 AES-CCM-128 AES-CCM-128 Data is encrypted.

Data authenticity is validated.

802.15.4 Security

101

802.15.4 Security
 Data Payload field can have three different configurations depending on the

previously defined security fields:

– AES-CTR: all the data is encrypted using the defined 128 bit key and the AES
algorithm. The Frame Counter sets the unique message ID, and the Key
Counter (Key Control subfield) is used by the application layer if the Frame
Counter max value is reached.

– AES-CBC-MAC: MIC is attached to the end of the data payload. Its length
depends on the level of security specified in the Security Policy field. The MIC
is created encrypting information from the 802.15.4 MAC header and the
data payload.

102

data payload.

– AES-CCM (CCM = CTR with CBC-MAC): CCM mode combines CBC-MAC with
CTR mode of encryption. These two primitives are applied in an
"authenticate-then-encrypt" manner:

• CBC-MAC is first computed on the message to obtain a tag t

• the message and the tag are then encrypted using counter mode.

– One key insight is that the same encryption key can be used for both

The Access Control List

 Each 802.15.4 transceiver has to manage a list to control its "trusted brothers".
For this reason each node has to control its own Access Control List (ACL) which
stores at least the following fields:

– Address: the destination node

– Security Suite: the security police which is being used (e.g. AES-CCM-128)

– Key: the 128 bit key length used in AES

 When a node wants to send a message to a specific node or receives a packet, it
looks at the ACL to see if it is a trusted brother or not.

In the case it is, the node uses the data inside the specific row apply the

103

– In the case it is, the node uses the data inside the specific row apply the
security measures.

– In the case the node is not in the list or its message is rejected, an
authentication process starts.

 Same key in multiple ACL entries

– If used, very likely that nonce will be reused (loss of confidentiality)

 Loss of ACL from power failure: recommended re-keying.

 ACL is stored in MAC PAN Information Base (PIB) and is accessed and modified
similar to other MAC attributes.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

104

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

Secure Routing
 First: messages must be signed.

 Second: an IDS must be running.

 Sybil attack

– Limit the number of neighbors for a node.

– IDS: search for ID conflicts

 HELLO flood attack

– Verify if links with these new nodes are bidirectional

105

– IDS: search for HELLO generators with conflicting IDs.

 Wormhole, sinkhole attack

– Robust routing protocol design (e.g. spanning tree).

– IDS: measure packet delivery latencies

 Selective forwarding

– Multi-path routing: message routed over n paths whose nodes are
completely disjoint.

– Dynamically pick next hop from a set of candidates.

– IDS: search for nodes with frequent requests to re-transmit.

Outline
 Passive Security Functions

– Ciphering

– Hash functions

– Message authentication codes

– Digital signatures

 Key Establishment Protocols

– Symmetric KEP

– Asymmetric KEP

– ID Based KEP

106

– Hybrid KEP

– Authentication of public key

 Key Management Protocols

– TinySEC

– TinyECC

– TinyIBE

 Passive security techniques for

– IEEE 802.15.4 MAC

– Routing

– ZigBee

ZigBee Security
 The Trust Center is usually the network coordinator. It is responsible for the

following security roles:

– Trust Manager: to authenticate devices that request to join the network;

– Network Manager: to maintain and distribute network keys;

– Configuration Manager: to enable end-to-end security between devices

 Master Key: this optional key is not used to encrypt frames but is used as an
initial shared secret between two devices when they perform the Key
Establishment Procedure (SKKE) to generate Link Keys. Keys that originates from
the Trust Center are called Trust Center Master Keys, while all other keys are

107

called Application Layer Master Keys.

 Network Key: this key performs security Network Layer on a ZigBee network. All
devices on a ZigBee network share the same key.

– High Security Network Keys must always be sent encrypted over the air

– Standard Security Network Keys can be sent either encrypted or unencrypted. Note
that High Security is supported only for ZigBee PRO.

 Link Key: this optional key secure unicasts messages between two devices at the
Application Layer. Keys that originate from the Trust Center are called Trust
Center Link Keys, while all other keys are called Application Layer Link Keys.

ZigBee Security
2. Authentication and Data Encryption: Data is encrypted using 128-bit AES with

CCM mode (remind CCM = CTR with CBC-MAC) allowing authentication and
data encryption.

• AES-CCM is FIPS-complaint

• ZigBee uses a slightly modified version of CCM called CCM*, which gives
more flexibility than the standard CCM

3. Integrity and Freshness of Data: Message Integrity Code (MIC) can be used to
make sure that the data has not been altered in transit.

108

make sure that the data has not been altered in transit.

• ZigBee supports 16, 32, 64, and 128 bit MIC lengths.

• MIC is generated using the CCM* protocol.

BACKUP SLIDES

109

Convert to State Array

Input block:

0 4 8 12

1 5 9 13

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

110

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 152 6 10 14

3 7 11 15

1,0 1,1 1,2 1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

=

AddRoundKey
 XOR each byte of the Round Key with its

corresponding byte in State Array

S0,0 S0,1 S0,2 S0,3

S0,1

XORXORXOR

111

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

R0,1

R1,1

R2,1

R3,1

SubBytes

 Replace each byte in the state array
with its corresponding value from the
State Array.

112

00 44 88 CC

11 55 99 DD

22 66 AA EE

33 77 BB FF

55

ShiftRows
 Last three rows are cyclically shifted

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3S1,0

113

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3S3,0 S3,1 S3,2

S2,0 S2,1

MixColumns
 Apply MixColumn transformation to

each column

S’ = ({02} S) ⊕ ({03} S) ⊕ S ⊕ S

114

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S0,1

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

MixColumns()S’0,c = ({02} • S0,c) ⊕ ({03} • S1,c) ⊕ S2,c ⊕ S3,c

S’1,c = S0,c ⊕ ({02} • S1,c) ⊕ ({03} • S2,c) ⊕ S3,c

S’2,c = S0,c ⊕ S1,c ⊕ ({02} • S2,c) ⊕ ({03} • S3,c)

S’3,c = ({03} • S0,c) ⊕ S1,c ⊕ S2,c ⊕ ({02} • S3,c

AddRoundKey
 XOR each byte of the Round Key with its

corresponding byte in State Array

S0,0 S0,1 S0,2 S0,3

S0,1

XORXORXOR

115

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S’0,0 S’0,1 S’0,2 S’0,3

S’1,0 S’1,1 S’1,2 S’1,3

S’2,0 S’2,1 S’2,2 S’2,3

S’3,0 S’3,1 S’3,2 S’3,3

S1,1

S2,1

S3,1

S’0,1

S’1,1

S’2,1

S’3,1

R0,0 R0,1 R0,2 R0,3

R1,0 R1,1 R1,2 R1,3

R2,0 R2,1 R2,2 R2,3

R3,0 R3,1 R3,2 R3,3

R0,1

R1,1

R2,1

R3,1

The Birthday Paradox
 Given a set of N elements, from which we sample k elements (k<<N) randomly

(with replacement). What is the probability of encountering at least one
repeating element?

 First, the probability of no repetition for each sample respect to the previous
ones is:

– The first element x1 can be anything then Pr(x1)= 1/N

– When choosing the second element x2 then Pr(x2 ≠ x1) = 1-1/N

– When choosing x3, then Pr(x3 ≠ x2 and x3 ≠ x1) = 1-(1/N+1/N) = 1-2/N

– When choosing x , then Pr(x ≠ x …, and x ≠ x) = 1-(k-1)/N

116

– When choosing xk , then Pr(xk ≠ xk-1 …, and xk ≠ x1) = 1-(k-1)/N

 Second, the probability of no repetition for any sample is the joint probability

(1 - 1/N)(1 - 2/N)…(1 – (k-1)/N)

If k<<N is verified the approximation (1-k/N) ≈ e-k/N applies.

Hence (1 - 1/N)(1 - 2/N)…(1 – (k-1)/N) ≈ e-1/Ne-2/N … e-(k-1)/N = e-k(k-1)/2N

 Hence the probability of at least one repetition after k samples is:

1 – e-k(k-1)/2N

The Birthday Paradox
 How many samples k in a set of N elements do you need if you want the

probability of at least one repetition to be ε ?
Solve for k equation 1 – e-k(k-1)/2N = ε

 Therefore:

ε = 1 – e-k(k-1)/2N

k(k-1) = -2N ln(1/(1- ε)) = 2N ln(1- ε)

(1) k ≈ sqrt(2Nln(1-ε))
if ε << 1 then 2N ln(1- ε) ≈ 2Nε

117

(2) k ≈ sqrt(2Nε)

 Example: the Birthday Paradox with N=365 and ε = 0.5. Use (1):

k ≈ 1.177 sqrt(N) ≈ 23.

 Example: an hash function 128 bit (N=3.4⋅1038) with probability of at least one
collision is ε = 10-18 . Use (2):

k ≈ sqrt(2Nε) = 2.6 ⋅1010.

“only” after k ≈ 2.6 ⋅1010 attemps the probability of a collision is 10-18 !!

CMAC
To generate an ℓ-bit CMAC tag (t) of a message (m) using a b-bit block cipher (E)
and a secret key (k), one first generates two b-bit sub-keys (k1 and k2) using the
following algorithm (this is equivalent to multiplication by x and x2 in GF(2b)).

Let ≪ denote the standard left-shift operator and ⊕ denote bit-wise XOR:

 Calculate a temporary value k0 = Ek(0).

 If msb(k0) = 0, then k1 = k0 ≪ 1, else k1 = (k0 ≪ 1) ⊕ C; where C is a certain
constant that depends only on b. (Specifically, C is the non-leading coefficients
of the lexicographically first irreducible degree-b binary polynomial with the
minimal number of ones: 0x1B for 64-bit, 0x87 for 128-bit, and 0x425 for 256-

118

bit blocks.)

 If msb(k1) = 0, then k2 = k1 ≪ 1, else k2 = (k1 ≪ 1) ⊕ C.

 Return keys (k1, k2) for the MAC generation process.

CMAC
As a small example, suppose b = 4, C = 00112, and k0 = Ek(0) = 01012.

Then k1 = 10102 and k2 = 0100 ⊕ 0011 = 01112.

CMAC tag generation process is as follows:

 Divide message into b-bit blocks m = m1 ∥ ... ∥ mn−1 ∥mn, where m1, ..., mn−1 are
complete blocks. (The empty message is treated as one incomplete block.)

 If mn is a complete block then mn′ = k1 ⊕mn else mn′ = k2 ⊕ (mn ∥ 10...02).

 Let c0 = 00...02.

 For i = 1, ..., n − 1, calculate ci = Ek(ci−1 ⊕mi).

119

 cn = Ek(cn−1 ⊕mn′)

 Output t = msbℓ(cn).

The verification process is as follows:

 Use the above algorithm to generate the tag.

 Check that the generated tag is equal to the received tag.

Random Key Pre-Distribution Scheme

1. Initialization

Key

reservoir

(k keys)

m (<<k) keys in each sensor (“key ring of the node”)

120

2. Deployment

Do we have a common key?

Probability for any 2 nodes

to have a common key:

)!2(!

))!((
1

2

mkk

mk
p

−
−−=

Basic Scheme
 Initialization phase

– A large pool S of unique keys are picked at random.

– For each node, m keys are selected randomly from S and pre-loaded in the
node (key ring).

 Direct Key Establishment phase

– After deployment, each node finds out with which of its neighbors it shares a
key (e.g., each node may broadcast the list of its key IDs).

Two nodes that discover that they share a key verify that they both actually

121

– Two nodes that discover that they share a key verify that they both actually
possess the key (e.g., execute a challenge-response protocol).

 Path Key Establishment phase

– Neighboring nodes that do not have a common key in their key rings
establish a shared key through a path of intermediaries

– Each link of the path is secured in the direct key establishment phase

Setting the parameters
 Connectivity of the graph resulting after the direct key establishment phase is

crucial

 A result from Random Graph Theory [Erdős-Rényi, 1959]: in order for a random
graph to be connected with probability c<1 (e.g., c = 0.9999), the expected
degree d of the edge (expected number of arcs from that edge over the total
number of edges) should be:

(1))))cln(ln()n(ln(
n

1n
d −−−=

122

 In this case, d = pn’ (2), where p is the probability that two nodes have a
common key in their key rings, and n’ is the expected number of neighbors (for
a given deployment density)

 p depends on the size k of the pool and the size m of the key ring

c d p k, m (3)(1) (2) (3)

)!m2k(!k

))!mk((
1p

2

−
−−=

Setting the parameters – an example
 Number of nodes: n = 10000

 Expected number of neighbors: n’ = 40

 Required probability of connectivity after direct key establishment: c = 0.9999

 using (1) required node degree after direct key establishment: d = 18.42

 using (2) required probability of sharing a key: p = 0.46

using (3) appropriate key pool and key ring sizes:

123

 using (3) appropriate key pool and key ring sizes:

k = 100000, m = 250

k = 10000, m = 75

…

Qualitative Analysis
 Advantages:

– No need for intensive computation

– Path key establishment have some overhead

• decryption and re-encryption at intermediate nodes

• communication overhead

– No assumption on topology

– Easy addition of new nodes

124

 Disadvantages:

– Node capture affects the security of non-captured nodes too

• if a node is captured, then its keys are compromised

• these keys may be used by other nodes too

– If a path key is established through captured nodes, then the path key is
compromised

– No authentication is provided

q-composite rand key pre-distribution
 Basic idea:

– Two nodes can set up a shared key if they have at least q common keys in
their key rings

– The pairwise key is computed as the hash of all common keys

 Advantages:

– in order to compromise a link key, all keys that have been hashed together
must be compromised

125

 Disadvantages:

– probability of being able to establish a shared key directly is smaller (it is
less likely to have q common keys, than to have one)

– Optimum key ring and key pool sizes:

• key ring size should be increased (but: memory constraints)

• key pool size should be decreased (but: effect of captured nodes)

Polynomial based key pre-distribution
 Let f be a bivariate t-degree polynomial over GF(q), q prime, or GF(2n), s.t. f(x, y)

= f(y, x)

 Each node is pre-loaded with a polynomial share f(i, y), where i is the ID of the
node, aij randon values in GF(q)

 Any two nodes i and j can compute a shared key by

– i evaluating f(i, y) at point j and obtaining f(i, j), and

j evaluating f(j, y) at point i and obtaining f(j, i) = f(i, j)

 ==
==

t

0j,i

ij
ij

t

0j,i

ji
ij yxayxa)y,x(f

126

– j evaluating f(j, y) at point i and obtaining f(j, i) = f(i, j)

 This scheme can be unconditionally secure and is t-secure

– unconditionally secure: uncertainty on shared secret is not reduced by
information exchange if destination IDs are known

– t-secure: any coalition of at most t compromised nodes knows nothing
about the shared keys computed by any pair of non-compromised nodes

 Memory requirement of the nodes is (t +1) log(q), s.t. t is limited by the memory
constraints of the sensors

Polynomial based key pre-distribution
 Operation:

– Let S be a pool of bivariate t-degree polynomials

– For each node i, we pick a subset of m polynomials from the pool

– Pre-load into node i the polynomial shares of these m polynomials
computed at point i

– Two nodes that have polynomial shares of the same polynomial f can
establish a shared key f(i, j)

– If two nodes have no common polynomials, they can establish a shared key
through a path of intermediaries

127

through a path of intermediaries

 Statistically the scheme can tolerate the capture of more than t nodes. Infact:

– In order to compromise a polynomial, the adversary needs to obtain t + 1
shares of that polynomial

– It is very unlikely that t + 1 randomly captured nodes have all selected the
same polynomial from the pool

