
Corso Professionalizzante di Specializzazione (3 CFU)

Ingegneria dell’Informazione o magistrale in Ingegneria Informatica

Automatica, Ingegneria Elettronica,

Ingegneria delle Telecomunicazioni

WSN and VANET Security
Part II: Techniques for WSN and VANET

Security

1

Lecture II.1

Passive Security Functions: Mathematical Background

Ing. Marco Pugliese, Ph.D., SMIEEE

Senior Security Manager cert. UNI 10459-2017

marpug@univaq.it

April 26th, 2024

Security

Kerckhoffs’ Principle
• The dutch cryptographer A. Kerckhoffs (1835-1903) stated the design principles

for military ciphers (La Cryptographie Militaire, 1883)

• Kerckhoffs' principle: «A cryptosystem should be secure even if everything about
the system, except the key, is public knowledge, and it should not be a problem
if it falls into enemy hands».

• This in contrast to security through obscurity.

2

• Kerckhoffs viewed cryptography as a better alternative than steganographic
encoding, which was common in the nineteenth century for hiding the meaning
of military messages.

• The american mathematician and engineer C. E. Shannon (1916 – 2001) has been
the father of Information Theory and the first to guess that security was a matter
from information theory (information theoretic security).

The Shannon’s Lessons

Claude Elwood Shannon, 1916-2001

C. E. Shannon, A Mathematical Theory of Communication

Bell System Technical Journal, vol. 27 (3): 379–423, July 1948

http://www.essrl.wustl.edu/~jao/itrg/shannon.pdf

C. E. Shannon, Communication Theory of Secrecy Systems

Bell System Technical Journal, vol. 28 (4): 656–715, October 1949

http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

The sovietic mathematician Aleksandr Jakovlevič Chinčin (1894-1957) with his

3

A compendium of C.E. Shannon and A.J. Chinčin’s masterworks with application to cryptography can be found in:

M. Pugliese, Fundamentals of Information Theory with Application to Cryptography - Summary from the

lessons by C.E. Shannon and A.Y. Khinchin, v.3.4, 2021, https://mpugliese.webnode.it/scientific-contributions/

Mathematical foundations of information theory, gave the first comprehensive

introduction to information theory, places the work begun by Shannon and

continued by McMillan, Feinstein on a rigorous mathematical basis. Chinčin develops

the concept of entropy in probability theory as a measure of uncertainty of a finite

scheme, and discusses a simple application to coding theory, and investigates the

restrictions previously placed on the study of sources, channels, and codes and

attempts “to give a complete, detailed proof of both Shannon theorems, assuming

any ergodic source and any stationary channel with a finite memory.”

Lesson 1: Shannon Entropy
• Classical entropy is a measure of disorder in a system: disorder refers to the

uncertainty about the determination of the hidden particular micro-
configurations that correspond to the observable macro-configuration. Shannon
entropy H(P) is a measure of uncertainty about a discrete stochastic process P:

H(P) = -Ppr(p)log2(pr(p)) where p is a determination of the process P and pr(p)
the probability of that determination where 0 < pr(p) ≤ 1.

• Shannon-Chinčin : information corresponds to uncertainty, i.e. I(P) = H(P).

• Determinations from a known process P (then pr(p)=1) imply H(P) = 0, i.e. no
uncertainty about P, and imply I(P) = H(P) = 0, i.e. no added information about P.

4

• Conditional Shannon entropy H(P|Q) is a measure of the uncertainty about the
process P once known a determination of another process Q.

H(P|Q) = -P,Qpr(p|q)log2(pr(p|q)) where pr(p|q)= pr(p,q)/pr(q) (Bayes)

Therefore H(P|Q) = H(P,Q)-H(Q);

Iff P and Q are statistically independent then H(P|Q) = H(P), hence H(P,Q) =
H(P)+H(Q). Otherwise H(P|Q) < H(P), hence H(P,Q) < H(P)+H(Q).

• I(P;Q) = H(P) - H(P|Q) ≥ 0: defines the information about P with Q given by the
uncertainty about P without the knowledge of Q reduced by the uncertainty
about P with the knowledge of Q. Iff P and Q are statistically independent then
I(P;Q) = 0.

Lesson 1: Shannon Entropy
• Shannon entropy is measured in the unit “bit”.

• Shannon introduced the operator log2() (log base 2) in the definition of entropy
for a direct application to digital communications: two logic states or binits 0 / 1
associated to two electronic states.

– In a (honest) coin tossing process, the determinations of coin faces are
equiprobable and statistically independent (pH=0,5 pT=0,5)

– Which is the entropy associated to a coin tossing (ct) process?

H(ct) = -(pHlog2(pH)+pTlog2(pT)) = -2(1/2)log2(1/2) = 1 bit.

• If the “emission of a random sequence of binary digits” process is statistically

5

• If the “emission of a random sequence of binary digits” process is statistically
equivalent to a “coin tossing” process: the generated bitstream is a random
sequence and the entropy of the process = 1 bit / binit.

• Truly random bitstreams cannot be inherently generated by whatever
deterministic algorithms or process even in the case of high entropy seed (only a
stochastic algorithm or process can generate truly random bitstreams. Therefore
only pseudorandom bistreams can be available (entropy < 1 bit / binit).

• Given a generic stochastic process P, the upper bound for H(P) is log2|P| which
corresponds to the entropy if P were a random process:

H(P) ≤ log2|P| where log2|P| = -|P|(1/|P|)log2(1/|P|) by setting pr(p)=1/|P|.

Lesson 2: Secrecy Classification
• A function is computationally infeasible if its time complexity is more than

polynomial time (e.g. sub-exponential or exponential time): an algorithm is
polynomial time (or has polynomial time complexity) if for some m, C > 0, its
running time (dependent on the available computational resource) on inputs of
size n is at most Cnm or, equivalently, an algorithm is polynomial if for some m >
0 its running time on inputs of size n is O(nm).

• The value of the “input size” depends on the nature of the problem: in the case
of cryptosystems, size n is the order of the reference finite field.

• A function f(x) is one-way (or surjective or many-to-one or with collisions) if
complexity of y = f (x) is polynomial time and x = f-1(y) is computationally

6

complexity of y = f (x) is polynomial time and x = f-1(y) is computationally
infeasible.

• Given k, a function fk(x) is one-way if complexity of y = fk(x) is polynomial time
and x = fk

-1(y) is computationally infeasible if k unknown or polynomial time if k
known. x = fk

-1(y) is also denoted as the reverse cryptographic problem.

• The reverse function x = f-1(y) or fk
-1(y) with k unknown are palindrome (or one-

to-many) and spurious solutions can result.

• The reverse function fk
-1(y) with k known is invertible (or one-to-one).

• Many cryptographic functions are one-way functions: e.g. cryptographic secure
pseudo random generators, RSA encryption / decryption function, block ciphers,
discrete logarithm problem, hash function, square root, …

Lesson 2: Secrecy Classification
Let P the process “emission of a sized sequence of binary digits” and C the process
“computation of C=fk(P)” where fk() is a one-way function and k is the key.

• Perfect (or unconditional) Secrecy: the uncertainty on plain-text is not reduced
by the observation of the related cipher-text.

Once known the cipher-text, the uncertainty of the plain-text is equal to the uncertainty
of the plain-text unknown the cipher-text (P and C are statistically independent)

Therefore no information is gained from the knowledge of the cipher-text.

)P(H)C|P(H =

7

0)C|P(H)P(H)C;P(I =−=
• Realistic (or conditional) Secrecy: if the uncertainty on plain-text is reduced by

the observation of the related cipher-text.

Once known the cipher-text, the uncertainty of the plain-text is less than the uncertainty
of the plain-text unknown the cipher-text.

Therefore some bit of information is gained from the knowledge of the cipher-text.

0)C|P(H)P(H)C;P(I >−=

)P(H)C|P(H <

Lesson 3: Perfect Secrecy

• Let K,P,C be instances of the same process “emission of a sized sequence of
binary digits”.

• Let |K|,|P|,|C| be the number of sized sequences of binary digits (bistrings)
that K, P, C can emit.

• Let len(K)=log2|K|, len(P)= log2|P|, len(C)=log2|C| be the lengths of the generic
sized sequence of binary digits that K, P, C can emit.

• Let k∈{0,1}len(K) p∈{0,1}len(P) c∈{0,1}len(C) be generic sized sequences emitted by K,
P, C. A bistring emitted by P and C are also called block or gram.

• Let e ()∈E be an encryption one-way function with key k such that for ∀p ∈ P

8

• Let ek()∈E be an encryption one-way function with key k such that for ∀p ∈ P
and any k is c = ek(p).

Shannon in his “Communication Theory of Secrecy Systems”, introduced the
following fundamental theorem:

• Theorem on Perfect Secrecy: suppose a cryptosystem where |K| = |C| = |P|.
Then the cryptosystem provides perfect secrecy if and only if any key k is used
with equal probability 1/|K| and ∀p ∈ P, there exists a unique key k ∈ K and
c ∈ C such that ek(p) = c. Therefore for ∀p ∈ P and any k ≠ k’ is ek(p) ≠ ek’(p).

Lesson 4: Key and Message Equivocation

Suppose a “brute force” attacker is observing a transmitted ciphertext.

• Theorem on Key Equivocation: the amount of uncertainty (or equivocation) on
the key that remains after knowing the cipher-text, indicated with H(K|C), is
given by:

)C(H)K(H)P(H)C|K(H −+=

• Key Equivocation is a performance index for a cryptosystem: it should be as
larger as possible. Be Cn the n-th cipher-text block (n-gram) observed by the
attacker:

9

attacker:

• Upper bound is H(K|Cn)=H(K) as H(Cn)min = H(Pn).

• Lower bound is H(K|Cn)=H(K)-nRPlog2|P| where RP is the redundancy of the
plain-text:

For large n, if RP → 0 then H(K|Cn) → H(K), hence Key Equivocation gets its
upper bound.

Plog

)P(H
1R

2

P −=

1
P

K
s

PnRn −=

Lesson 5: Spurious Keys

Let sn be the expected number of spurious keys corresponding to the n-th
cipher-text block observed by an attacker, Shannon showed that:

• To a given Key Equivocation H(K|C) corresponds a set of keys (denoted as
Spurious Keys) for which the cipher-text can deciphered in multiple plain-texts
(remember that an encryption function with unknown key is one-to-many)
excepting the legitimate ciphering key.

10

P

With increasing n, Spurious Keys reduce.

• It is important to determine the minimum n0 for which the (expected) number
of spurious keys should be zero (only the legitimate key is expected to remain).

Observation: an attacker should record at least no binits of cipher-text to expect
to solve univocally the cryptographic reverse problem on that cipher-text shall
produce the only legitimate key. Therefore: no should be as larger as possible.

Lesson 6: Unicity Distance

• The number n0 is called Unicity Distance.

• Let impose sn = 0 for n=no

If RP → 0 and/or if |K| >> |P|, then n0 gets larger.

PlogR

Klog
n

2P

2
0 =

11

P 0

• Therefore reduced redundancy (high compressions) and large space key
enhance communication robustness from a cybersecurity viewpoint.

• The object of coding is designing efficient and reliable data
transmission methods. This typically involves the removal of redundancy
(source coding) and the correction / detection of errors in the transmitted data
(channel coding) to enhance communication robustness from a noisiness
viewpoint …

• … but correction / detection of errors introduces some code redundancy!

Need to find a balance.

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

12

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Finite Groups
• A finite group G(n,◦) is a set of n elements and one operation symbolically

denoted with ◦.

• Operation ◦ satisfies four group axioms: closure, associativity, identity (0) and
invertibility.

– closure: ∀a,b ∈G / a ◦ b ∈ G

– associativity: ∀a,b,c ∈ G / a ◦ (b ◦ c) = (a ◦ b) ◦ c

– identity: ∀a ∈ G: ∃! 0 (zero) / a ◦ 0 = a

0 = identity respect to ◦

invertibility ∀ G: (a) 0

13

– invertibility: ∀a ∈ G: a ◦ (-a) = 0

• If also commutativity then the group is abelian.

– closure: ∀a,b ∈G / a ◦ b = b ◦ a ∈ G

– associativity: ∀a,b,c ∈ G / a ◦ (b ◦ c) = (a ◦ b) ◦ c = (b ◦ c) ◦ a = b ◦ (c ◦ a)

– identity: ∀a ∈ G: ∃! 0 (zero) / a ◦ 0 = 0 ◦ a = a

0 = identity respect to ◦

– invertibility: ∀a ∈ G: a ◦ (-a) = (-a) ◦ a = 0

Finite Groups
• Order of a finite group or ord(G) = the number of elements of a finite group

• Order of an element a of a finite group: ord(a)=n if n is the smallest integer
such that a ◦ a ◦ … (n times) … ◦ a = 0.

• A group G(n,◦) is a cyclic group if all n elements can be generated from a single
element by applying iteratively the defined operation ◦.

– This element is called base element (or generator) of the group respect to
the operation ◦.

– The order of a cyclic group, is also called the order of the generator.

14

• A subgroup of a group is a subset of the elements of the group for which still
holds the definition of group. The number of elements of a subgroup
determines the order of the subgroup.

• A cyclic subgroup of a cyclic group is a subset of the elements of the cyclic
group for which still holds the definition of cyclic group. The number of
elements of a cyclic subgroup determines the order of the cyclic subgroup.

The example G(10,+)
• Suppose G(10, +) additive abelian group of integers 0, 1, 2, …, 9. Let a, b ∈ G.

• Operator + is defined as follows: a + b = remainder of (a+b)/n (a + b mod n)

• Is G a cyclic group? Yes, because:

1, 1+1=2, 2+1=3, 3+1=4, 4+1=5, 5+1=6, 6+1=7, 7+1=8, 8+1=9, 9+1=0: 1 is a generator

3, 3+3=6, 6+3=9, 9+3=2, 2+3=5, 5+3=8, 8+3=1, 1+3=4, 4+3=7, 7+3=0: 3 is a generator

7, 7+7=4, 4+7=1, 1+7=8, 8+7=5, 5+7=2, 2+7=9, 9+7=6, 6+7=3, 3+7=0: 7 is a generator

9, 9+9=8, 8+9=7, 7+9=6, 6+9=5, 5+9=4, 4+9=3, 3+9=2, 2+9=1, 1+9=0: 9 is a generator

• In general for an additive cyclic group order n, the element k is a generator iff gcd (k,n)=1,
or k and n are co-primes; if gcd (k,n)>1 then k is a generator of a subgroup of order n/gcd;
the number of subgroups is equal to the number of divisors of the group order n.

15

the number of subgroups is equal to the number of divisors of the group order n.

• Therefore: 1,3,7,9 are generators of G(10,+); 2 subgroups say A and B order 5 and 2;
2,4,6,8 are generators of subgroup A and 5 is generator of subgroup B.

gcd(2,10)=2; order = 10/2=5

gcd(4,10)=2; order = 10/2=5

gcd(5,10)=5; order = 10/5=2

gcd(6,10)=2; order = 10/2=5

gcd(8,10)=2; order = 10/2=5

• If n prime, any element in G is generator of G

because gcd (∀k,n)=1, no subgroups because n

has no divisors (n is prime).

1 2 3 4 5 6 7 8 9 0

2 4 6 8 0 2 4 6 8 0

3 6 9 2 5 8 1 4 7 0

4 8 2 6 0 4 8 2 6 0

5 0 5 0 5 0 5 0 5 0

6 2 8 4 0 6 2 8 4 0

7 4 1 8 5 2 9 6 3 0

8 6 4 2 0 8 6 4 2 0

9 8 7 6 5 4 3 2 1 0

Finite Fields (Galois fields)
• An abelian finite field (or Galois field) GF(G, *) extends a finite abelian additive

group G(n, +) by adding a further operation * and the further group axiom
distributivity:

– closure: ∀a,b ∈GF / a + b ∈ GF, a * b ∈ GF

– associativity: ∀a,b,c ∈ GF / a + (b + c)=(a + b) + c, a * (b * c)=(a * b) * c

– identity: ∀a ∈ GF: ∃! 0 (zero) / a + 0 = a, ∃! 1 (one) / a * 1 = a

0 = additive identity, 1 = multiplicative identity

– invertibility: ∀a ∈ GF: a + (-a) = 0, a * (a-1) = 1

distributivity of * respect to +: ∀a,b,c GF / (a + b) * c=(a * c) + (b * c)

16

– distributivity of * respect to +: ∀a,b,c ∈ GF / (a + b) * c=(a * c) + (b * c)

• Characteristic of GF or char(GF): char(GF)=k if k is the smallest integer such that
1 + 1 + … (k times) … + 1 = 0, otherwise char(GF)=0.

• Order of a finite field or ord(GF) = the number of elements of a finite field.

• A finite field of order q exists if and only if the order is q = pk where p is a prime
and k is a positive integer. Therefore we can only have GF(p), GF(p2), …, GF(pk).

• GF(p) is denoted as “ordinary” GF, GF(pk) are denoted as “Galois field extensions”

• Char(GF(q= pk)) = p

• Let’s start with GF(p)

Operations with ordinary Galois fields

Given a,b∈GF(p), define the operations + and * as follows:

• The addition (+) is defined as the remainder of (a+b)/p (a + b mod p)

• The product (*) is defined as the remainder of (a*b)/p (a * b mod p)

• The additive inverse (opposite) of a (indicated with -a) is defined as p-a

• The multiplicative inverse of a (indicated with a-1) is

– computed using the Extended Euclidean Algorithm.

– computed using the Fermat Little Theorem.

17

• It can be shown that non-zero elements of an ordinary Galois field form
a multiplicative cyclic group.

• Let us search for generators of GF(p).

• It can be shown that given g∈GF(p), then g is a generator of GF(p) if g(p-1)/q≠1
where q is a prime divisor of p-1.

E.g. p=7: prime divisors of 6 (=7-1) are q=2 and q=3.

g=3 and g=5 are generators because 33 ≠1, 32 ≠1 and 53 ≠1, 52 ≠1.

g=3: 31=3, 32=2, 33=6, 34=4, 35=5, 36=1

g=5: 51=5, 52=4, 53=6, 54=2, 55=3, 56=1

Extended Euclidean Algorithm
• The Euclidean Algorithm computes the “greatest common divisor” (gcd) between

a couple of integers a and b.

• The Extended Euclidean Algorithm computes the “greatest common divisor”
(gcd) between a couple of integers a and b, and computes the coefficients x and
y of the so called “Bézout's identity”:

ax+by = gcd(a,b)

If b=p (p prime), then a and p are co primes, thus gcd(a,p)=1

18

• If b=p (p prime), then a and p are co-primes, thus gcd(a,p)=1:

ax+py = 1

• It can be easily shown by applying modulo p in both terms, and being
py mod p = 0 ∀y, we get ax = 1 mod p.

• Therefore x is the modular multiplicative inverse modulo p of a

x = a-1 mod p.

Fermat Little Theorem
Theorem: given p prime in GF(p), ∀a≠0 is

a(p-1) mod p = 1

Corollaries:

- Multiplying by a both terms is ap mod p = a (cyclicity).

- Multiplying by a-1 both terms is a(p-2) mod p = a-1 (inverse).

• Example in GF(7): ∀a≠0

19

• Example in GF(7): ∀a≠0

– a6 mod 7 = 1

– a7 mod 7 = a

– a-1 mod 7 = a5 mod 7

• Therefore inversion through exponentiations.

• Exponentiation is energy and time consuming: these are some algebraic tricks
(e.g. Square and Multiply algorithm) to minimize computations.

• Generally the Extended Euclidean Algorithm to be preferred in terms of
complexity.

Extended Galois Field GF(pn)
• GF(pn) extends GF(p) and is an abelian cyclic group with p prime, n integer.

• Note that pn is never prime.

• Elements in GF(pn) are pn polynomials degree up to n-1 with n coefficients in
GF(p): therefore elements in GF(pn) are pn n-plas in GF(p) and Char(GF(pk)) = p.

• Special case p = 2 → GF(2n): coefficients in GF(2), i.e. booleans.

E.g. GF(23): 8 elements: 0, 1, x, x+1, x2, x2+1, x2+x, x2+x+1

8 3-plas: 000, 001, 010, 011, 100, 101, 110, 111

For GF(2n): 2n n-plas (all combinations of 2 elements in groups of n).

20

Easy costruction of G(pn): any bit string size n is an element in GF(pn)

• Irreducible polynomial: a polynomial p(x) degree n divisible only by 1 and by itself.
It is used for congruences (the same as mod p in GF(p)).

E.g. GF(23): an irreducible polynomial is p(x)=x3+x+1, notation is GF(23)/x3+x+1.

E.g. GF(28): GF(28)/x8+x4+x3+x+1 (Rijndael polynomial in AES).

• Computing irreducible polynomials is an advanced topic (Artin–Schreier theory).

Operations in GF(2n) as well as operations with bit strings size n correspond to
congruence operations between polynomials degree up to n-1.

Operations with extended Galois fields

Operations on polynomials in GF(pn) corresponds to operations on their
coefficients in GF(p). Given a,b∈GF(pn), define the operations + and * as follows:

• The addition (+) is defined as a+b

• The product (*) is defined as the remainder of (a*b)/p(x) (a * b mod p(x))

• The additive inverse (opposite) of a (indicated with -a) is defined as the
polynomial where each coefficient is the additive inverse in GF(p)

• The multiplicative inverse of a (indicated with a-1) is

– computed using the Polynomial Extended Euclidean Algorithm.

computed using the Fermat Little Theorem.

21

– computed using the Fermat Little Theorem.

• It can be shown that non-zero elements of an extended Galois field form
a multiplicative cyclic group.

• Let us search for generators of GF(pn).

• It can be shown that given g∈GF(pn), then g(x) is a generator of GF(pn) if
g(p -1)/q≠1 where q is a prime divisor of pn-1.

E.g. p=2, n=3, pn=23: prime divisors of 7 (=8-1) is only q=7. Hence any
g(x)∈GF(23) ≠1 is a generator.

E.g. g(x)=x: x1=x, x2=x2, x3=x+1, x4=x2+x, x5=x2+x+1, x6=x2+1, x7=1

n

Operations with GF(2n)
Operations on polynomials in GF(2n) corresponds to operations on their coefficients
in GF(2):

• Addition: 0+0 mod 2 = 0; 0+1 mod 2 = 1; 1+0 mod 2 = 1; 1+1 mod 2 = 0

Hence 0+0 = 0; 0+1 = 1; 1+0 = 1; 1+1 = 0

This is equivalent to a XOR between coefficients.

• Substraction: a-b = a+(-b) mod 2

Opposite: -a=2-a mod 2: -0 = 2-0 mod 2 = 0; -1 = 2-1 mod 2 = 1

Hence 0+(-0) = 0; 1+(-1) = 0; in general a+(-a) = 0

22

Still equivalent to a XOR between coefficients.

Therefore substraction and addition are coincident operations.

Hence any polynomial in GF(2n) coincides with its opposite.

• Product: ordinary product between polynomials and, if the resulting polynomial
degree is ≥ irreducible polynomial degree, then reduction by the irreducible
polynomial (the same as modulo operations).

• Division: a/b = a*(1/b) (where 1/b is the Multiplicative inverse of b)

Operations with GF(2n)
• Addition in GF(23):

(110) XOR (101) = (011)

(x2+x)+(x2+1)=x+1

• Product in GF(23):

(110) (101) mod (x3+x+1)

(x2+x)(x2+1) mod (x3+x+1) = (x4+x3+x2+x) mod (x3+x+1)

23

The degree (4) of product polynomial is greater than the degree (3) of the
irreducible polynomial → reduction operation

A reduction is an ordinary polynomial division where the irreducible polynomial
is the divisor.

Reduction by the irreducible polynomial x3+x+1:

x4+x3+x2+x = (x+1)(x3+x+1) + (1)

Therefore the product is 1 = (001)

Polynomial Extended Euclidean Algorithm
• The greatest common divisor of two polynomials is a polynomial of the highest

possible degree that is a factor of both the two original polynomials (the
concept is analogous to the greatest common divisor of two integers).

• Similarly, the Polynomial Extended Euclidean Algorithm computes the
multiplicative inverse in algebraic field extensions and, in particular, in finite
fields of non prime order (pn is never prime).

• Polynomial Extended Euclidean Algorithm computes the polynomial greatest
common divisor and the coefficients of Bézout's identity of two univariate

24

common divisor and the coefficients of Bézout's identity of two univariate
polynomials.

If a and b are two nonzero polynomials, then the Polynomial Extended
Euclidean Algorithm produces the unique pair of polynomials (s, t) such that
as+bt=gcd(a,b)

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

25

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Strong Primes
• The number of primes < x is given (with good approximation) by x/lnx.

• x/lnx is monotonically increasing for x → ∞ (primes are infinite).

• Requirements for Strong Primes:

– gcd(p-1,q-1) is small (important if the key is the product of p with q)

– Both p-1 and q-1 have large prime factors p’, q’

– Also p’-1 and q’-1 have large prime factors

– (p-1)/2 and (q-1)/2 are both prime

26

• Mersenne Primes are primes of the form Mn = 2n − 1 for some integer n.

• Pseudo-Mersenne Primes are primes of the form 2n−k, where k is an integer for
which 0<|k|<2(n/2). Pseudo-Mersenne and Mersenne primes are useful in
cryptography because they admit fast modular reduction.

• Safe primes are primes of the form 2p + 1, where p is also a prime (p is denoted
Sophie Germain prime). These primes are "safe" because of their relationship to
strong primes: for a safe prime q = 2p + 1, the number q − 1 = 2p has the large
prime factor p and so a safe prime q meets part of the criteria for a Strong Prime.

• AKS Algorithm (Agrawal Kayal Saxena, 2002) is a deterministic primality proving
algorithm which determines whether a number is prime or composite within
polynomial time.

• It is applicable to any integer.

• It is not pre-conditioned by any conjecture.

The AKS primality test is based upon the following theorem: An integer n (≥ 2) is
prime if and only if the polynomial congruence relation

Primality Testing

))n((logO
12

2

27

holds for a, n such that GCD (a,n)=1 (a coprime to n); x is a free variable.

The authors received the 2006 Gödel Prize and the 2006 Fulkerson Prize for this
work.

nmod)ax()ax(
nn +=+

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

28

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Random vs. Pseudo Random Functions
• A random number is a number generated by a Random Function (RF) that cannot

be predicted with any better probability than a random probability distribution
before it is generated: e.g. if the number is generated within the range [0, N-1],
then its value cannot be predicted with any better probability than 1/N.

– A Random Function (RF) is a function f: {0, 1}n → {0, 1}n constructed as
follows: for each x∈{0, 1}n pick a random y∈{0, 1}n and let f(x)=y.

• A pseudo-random number is a number generated by a Pseudo Random Function
(PRF) that in line of principle can be predicted before it is generated.

29

– A Pseudo-Random Function (PRF) is a function fs such that
Pr({s ← {0, 1}n: fs}n)- Pr({f ← RFn: f }n) ≤ ε(n) is arbitrarily small.

Hence fs defined as the uniform sampling of s from the set {0, 1}n and f
defined as the result of a uniform sampling from the set of RFn are equivalent,

i.e. probability distributions differ for an arbitrarily small ε(n).

– PRF is realized as a deterministic algorithm initiated by a single sample
(seed) picked from a high entropy process: refer to NIST Special Publication
800-90A / 90B for the requirements of entropy and the related tests.

CSPRNG
A Cryptographically Secure PRNG (CSPRNG) is a PRNG but the reverse is not
necessarily true. Requirements are both statistic and cryptologic.

Statistic Test:

• Every CSPRNG should satisfy the next-bit test: given the first i bits of a sequence
of k bits, there is no polynomial-time algorithm that can predict the (i+1)th bit
with probability of success better than 50%.

Cryptologic Test:

30

Cryptologic Test:

• After an attacker has observed “many” previous outputs from the PRNG:

– It is computationally infeasible to compute the internal state of the PRNG.

– It is computationally infeasible to compute the next output of the PRNG.

Cryptographically Secure PRNGs

• RSA Generator

• Blum-Micali Generator

• Blum-Blum-Shub Generator

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

31

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Elliptic Curve Algebra in Cryptography

• Currently public key systems (e.g. RSA) are based on finite field GF(p), p prime,
with minimum key length k= 2048 bits, p ≈ 22048 and fk

-1(p) its reverse
cryptographic problem.

• Neal Koblitz in 1985 observed that public key systems embedded in the group
of points on an elliptic curve over a finite field GF(p’) are very appealing from a
cryptologic point of view: if g-1(p’) is the reverse cryptographic problem and
p’ << p then O(gk’

-1(p’)) ∼ O(fk
-1(p)) i.e. the same security level is reached using

key lengths much shorter (therefore more practical) than those in other public

32

key systems.

• If p’ = p elliptic curve cryptosystems result harder to “crack" than others
because O(gk

-1(p)) >> O(fk
-1(p)).

• Elliptic curve cryptosystems involve elementary arithmetic operations that
make it easy to implement (in either hardware or software).

Elliptic Curve Cryptosystems

N.Koblitz, Mathematics of Computation, (48), pp. 203-209, 1987

https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/

Canonical Form for EC

• Generalized Weierstrass Equation of elliptic curves using affine coordinates (x,y):

• For cryptography are of interest the following EC families:

with ai, x, y ∈ GF(p), p prime, or ∈ GF(2n), n integer

64
2

2
3

31
2 axaxaxyaxyay +++=++

33

• Be

• Be char(GF()) ≠ 2 and char(GF()) ≠ 3

baxxy 32 ++=

baxxxyy 32 ++=+

a1=a2=a3=0, a=a4, b=a6, x, y in GF(p)

0)b27a4(16
23 ≠+−=∆

(non-singular EC to avoid multiples roots)

a1=1, a2=a3=0, a=a4, b=a6, x, y in GF(2n)

The EC Group

– ∀P,Q ∈EC / P + Q ∈ EC (closure)

– (P + Q) + R = P + (Q + R) (associativity)

– P + O = O + P = P (identity element)

– there exists (− P) such that − P + P = P + (− P) = O (inverse element)

• Points of an Elliptic Curve E with coefficients in GF() or EC(GF()) constitute a
finite abelian additive cyclic group, with the operation + (“Point Addition”) and
where the O (“zero”) element (identity) is the so called ”Point at Infinity”.

• Therefore given points P,Q,R in EC(GF()):

34

• As any cyclic group, at least one generator G (or base point) exists in EC group.

• ord(G): as any additive group, ord(G) = n if n is the smallest integer such that
G + G + … (n times) … + G = nG = O.

• EC elements (EC points) can be generated applying iteratively Point Addition to
the generator G: {G, 2G, 3G, …, (n-1)G} ∪ O.

Observation: EC are natively defined over the projective plane with homogeneous
coordinates x,y,z (not over the affine plane with coordinates x/zα,y/zβ) where according to
the specific values for α and β, O is the point (*,*,0) outside the affine plane: therefore O
is an effective point of EC and in affine representations O must be added by construction.

Graphical Representation in R

O O

35

0>∆ 0<∆
O O

Graphical Representation in GF

36

Points of a Elliptic Curve

• Consider E: y2 = x3 + 2x + 3 with coefficient in GF(5)

x = 0 y2 = 3 no solution (0*0=0, 1*1=1, 2*2=4, 3*3=4, 4*4=1)

x = 1 y2 = 1 y = 1,4

x = 2 y2 = 0 y = 0

x = 3 y2 = 1 y = 1,4

x = 4 y2 = 0 y = 0

• Then points on the Elliptic Curve EC(GF(5)) are by enumeration:

37

Then points on the Elliptic Curve EC(GF(5)) are by enumeration:

{ (1,1), (1,4), (2,0), (3,1), (3,4), (4,0)} ∪ O

Therefore the points in EC(GF(5)) are 6 plus O.

In general the exact computation of the points in EC(GF()) is a difficult task.

• Hasse Theorem: order(EC(GF()) = number of points in EC(GF()) is in the range:
[q+1-q1/2, q+1+q1/2] ≈ q if q>>1 where q=pn, p prime, n integer

Definition of Point Addition

• Consider elliptic curve

E: y2 = x3 - x + 1 over R

• If P and Q are on E,

the point addition

R = P + Q
P

x

y

Q

O

38

is defined as shown in picture
R

x

• Special case of Point Addition is Point Doubling (Q = P = G): R=G+G=2G

• Iterative Point Additions is Scalar Multiplication: R=G+G+…G=nG

• Scalar Multiplication is energy and time consuming: these are some algebraic
tricks to minimize computations.

Operations in GF(p) Affine Coordinates

• Point Addition: R=P+Q

PQ

PQ

PRPR

QP
2

R

xx

yy

y)xx(y

xxx

−
−

=λ

−−λ=
−−λ=

baxxy 32 ++=

39

PQ xx −

• Point Doubling: R=2P

P

2
P

PRPR

P
2

R

y2

ax3

y)xx(y

x2x

+=λ

−−λ=
−λ=

Guide to Elliptic Curve Cryptography
D. Hankerson, A. Menezes, S. Vanstone, Ed. Spriger, ISBN 0-387-95273-X, 2004

Operations in GF(2n) Affine Coordinates

• Point Addition: R=P+Q

baxxxyy 32 ++=+

PQ

PQ

PRRPR

QP
2

R

xx

yy

yx)xx(y

axxx

+
+

=λ

+++λ=
+++λ+λ=

40

• Point Doubling: R=2P

PQ xx +

P

P
P

RR
2
PR

2
R

x

y
x

xxxy

ax

+=λ

+λ+=

+λ+λ=

Guide to Elliptic Curve Cryptography
D. Hankerson, A. Menezes, S. Vanstone, Ed. Spriger, ISBN 0-387-95273-X, 2004

Projective Coordinates
• Projective coordinates eliminate expensive modular inversions at the cost of

cheaper modular multiplications and squares.

• Formulas in projective coordinates can be derived by first converting the
points to affine coordinates, then using the formulas for Point Addition and
Point Doubling to add / double the affine points, and finally clearing
denominators.

• Lopez-Dahab Coordinates transformations

41

Lopez-Dahab Coordinates transformations

– From affine to projective: (x,y) → (x,y,1)

– From projective to affine: (x,y,z) → (x/z,y/z2)

• Jacobi Coordinates transformations

– From affine to projective: (x,y) → (x,y,1)

– From projective to affine: (x,y,z) → (x/z2,y/z3)

Operations in GF(p) Jacobi Coordinates

• Point Addition: R=P+Q

BD

xAC

zyB

zxA

P

2
PQ

2
PQ

−=
=

=
• Point Doubling: R=2P

2

2
PP

2
PP

4
P

2
PP

)zx)(zx(3C

y8B

yx4A

+−=

=

=

6432 bzaxzxzy ++= O = (0,1,0)

42

Czz

Cy)xCx(Dy

)Cx2C(Dx

yBD

PR

3
PR

2
PR

2
P

32
R

P

=
−−=

+−=

−=

PPR

R

R

2

zy2z

B)DA(Cy

Dx

CA2D

=
−−=

=
+−=

Software implementation of the NIST elliptic curves over prime fields
M. Brown, D. Hankerson, J. Lopez Hernandez, A. Menezes, Topics in Cryptology, CT-RSA,

2001(LNCS 2020), 250–265, 2001

Operations in GF(2n) Lopez-Dahab Coords

• Point Addition: R=P+Q

22

P

PPQ

P
2
PQ

BzC

xzxB

yzyA

=
+=
+=

• Point Doubling: R=2P

2
P

2
PR

4
P

2
PRRR

4
PR

4
P

4
PR

zxz

)bzyaz(xzbzy

bzxx

=

+++=

+=

42232 bzzaxzxxyzy ++=+ O = (1,0,0)

43

2
R

RQRRRQRR

2
R

2
P

2

Cz

)zyx(z)zxx(ACy

ACDAx

)azC(BD

=

+++=
++=

+=

Software implementation of elliptic curve cryptography over binary fields
D. Hankerson, J. Lopez Hernandez, A. Menezes, Cryptographic Hardware and Embedded

Systems—CHES 2000(LNCS 1965), 1–24, 2000.

EC Domain Parameters

• Given EC(GF(p)), p prime, the Domain Parameter associated to E is the 6-pla
defined as follows

– the prime p

– the coefficients a and b, with a,b∈GF(p)

– the generator G

– the order r of G

– the co-factor h defined as #E(GF(p))/r

44

• Given EC(GF(2m)), m integer, the Domain Parameter associated to E is the 6-
pla defined as follows

– the number m

– the coefficients a and b, with a,b∈GF(2m)

– the generator G

– the order r of G

– the co-factor h defined as #EC(GF(2m))/r

The co-factor determines if the generator G and EC points refer to the group
(h=1) or to a subgroup (h > 1) of order r.

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

45

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Discrete Logarithm Problem and its EC version
• DLP: Given y, g in GF(p), g generator, solve:

y = gx mod p for an integer x in [1,p-1] (x = logg(y)).

• ECDLP: Given Q, P in EC(GF(p)), P generator, solve Q = xP mod p for an integer x
in [1,p-1]. The lower bound complexity for both DLP and ECDLP is (Pohlig-
Hellman algorithm) is O(exp(2lnp⋅lnlnp)1/2) in case of p is a “safe prime”

– O(p1/2) in case of p is not a “safe prime”

• RSA: Given c, m in Z(n), n=pq, p,q primes, 2<e<n, solve c=me mod n for an integer
m. The lower bound complexity is O(exp((lnn)1/3⋅(lnlnn)2/3)).

46

Try to replace p = 2ECC_KEY_SIZE and n =
2RSA_KEY_SIZE values listed in the NIST table into
the expressions for compexity above: the
same complexity is returned!

O(exp(2lnp⋅lnlnp)1/2) ∼ O(exp((lnn)1/3⋅(lnlnn)2/3)).

Discrete Logarithm Problem and its EC version
• The Certicom ECC Challenge:

https://www.certicom.com/content/certicom/en/the-certicom-ecc-
challenge.html

• Certicom Corp. has issued a series of ECC challenges:

– Level I involves fields of 109-bit and 131-bit sizes.

– Level II includes 163, 191, 239, 359-bit sizes.

All Level II challenges are currently believed to be computationally infeasible.

• Cryptoanalysis of cyber attacks against DLP and ECDLP requires very advanced

algebraic tools out of the scope of this course.

47

algebraic tools out of the scope of this course.

An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance
S. Pohlig and M. Hellman, IEEE Transactions on Information Theory (24): 106–110, 1978.
Recent progress on the elliptic curve discrete logarithm problem
S. Galbraith, P. Gaudry, Designs, Codes and Cryptography, Springer Verlag, 2016, 78 (1), pp.51-72.
On the feasibility of an ECDLP algorithm
S. Grebnev, HSE Tikhonov Moscow Institute of Electronics and Mathematics (MIEM HSE), 2018
Some remarks on the elliptic curve discrete logarithm problem
Yu. Nesterenko, Mat. Vopr. Kriptogr., 2016, Vol. 7, Issue 2, 115–120
Reliability of RSA Algorithm and its Computational Complexity
M. Karpinsky, Y. Kinakh, International Scientific Journal of Computing, 2003, Vol. 2, Issue 3, 119-122

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

48

• Pairings on Elliptic Curves

• Zero Knowledge Proof

• Let G1 and G2 be additive cyclic groups of order n, n prime

• Let G3 be a multiplicative cyclic group of the same order n.

The pairing ê is the map:

• Bilinearity

Pairing Based Cryptography

ê(P+P’,Q)=ê(P,Q) ê(P’,Q) for any P,P’∈G1, Q∈G2

ê(P,Q+Q’)=ê(P,Q) ê(P,Q’) for any P∈G1, Q,Q’∈G2

ê: G1 x G2 → G3

49

• Non-Degeneracy

• In case G2=G1=E (pairing on elliptic curves), n is the order of the generator G of

E. In this case the pairing becomes:

(P,Q+Q’)= (P,Q) (P,Q’) for any P 1 2

For any non-identity point P∈G1 there is a Q∈G2 such that ê(P,Q) ≠ 1

For any non-identity Q∈G2 there is a P∈G1 such that ê(P,Q) ≠ 1

ê: E x E → G3

Weil Pairing on Elliptic Curves

• Weil pairing is a mapping from a couple of points on E order r (pairing) over GF()
to the r-th root of unity over GF().

• Let G1 = G2 = EC(GF()) be an elliptic curve defined over GF().

• Let P, Q ∈ EC(GF()) be points of order r, r prime, hence rP=O and rQ=O.

• Let µr be a set of r elements in GF()

• Weil Pairing êr is a bilinear, non-degenerate, alternating mapping of the form:

rr QPe µ→),(:ˆ { }1|() =∈=µ r
r xGFx

50

Sur les fonctions algébriques à corps de constantes fini

A. Weil, Les Comptes rendus de l'Académie des sciences, 210: 592–594, MR 0002863, 1940

1) êr(P1+P2,Q) = êr(P1,Q) êr(P2,Q) (bilinearity)

êr(P,Q1+Q2) = êr(P,Q1) êr(P,Q2) (bilinearity)

1a) êr(mP,Q) = êr(P,Q)m = êr(P,mQ), êr(P,nQ) = êr(P,Q)n = êr(nP,Q),

1b) êr(mP,nQ) = êr(P,Q)mn = êr(nP,mQ)

2) êr(P,Q) = 1 for all Q iff P = O and for all P iff Q = O (non degeneracy)

3) êr(P,Q) = êr(Q,P)−1 (alternation)

êr(P,P) = êr(P,P)−1

Weil Pairing on Elliptic Curves

ISO/IEC 14888-3:2018 recommends the costruction of a Weil Pairing er

according Miller’s algorithm:

R∉{O,P,-Q,P-Q}
)RP(g)R(f

)R(g)RQ(f
)Q,P(er −

−+=

• er is independent of choice of the

functions f and g and of the point R in E

In Miller’s algorithm f is the sloped line l

y

Q

v

l

y

QQ

v

l

51

• In Miller’s algorithm f is the sloped line l

through P and Q and g is the vertical

line v through P.

P R

x

Q

P RR

x

QQ

The Weil Pairing, and Its Efficient Calculation
V. S. Miller, Journal of Cryptology 17(4):235-261, 2004

Outline

• Modular Arithmetic

• Generating Prime Numbers

• Generating Pseudo-random Numbers

• Elliptic Curve Algebra

• Discrete Logarithm Problem and its EC version

• Pairings on Elliptic Curves

52

• Pairings on Elliptic Curves

• Zero Knowledge Proof

Peggy (the prover) Victor (the verifier)
n=p*q=713

p,q primes of the form 4k+3, k any integer, e.g. p=31 (4x7+3), q=23 (4x5+3)

random r<n

e.g. r=13

x=r2 mod n
x= 169

Challenges: a1=1, a2=0, a3=1

random booleans

a1, a2, a3

e.g. a1=1

a2=0

a3=1

Zero Knowledge Proof
Peggy’s secret is

(s1=5, s2=7, s3=3)

53

Challenges: a1=1, a2=0, a3=1 a3=1

y1=r s1
a1s2

a2s3
a3

v1=s1
2 mod n

v2=s2
2 mod n

v3=s3
2 mod n

v1= 25, v2= 49, v3= 9

y1= 195

y=xv1
a1v2

a2v3
a3 = 236

check y = y1
2

Proof: y1
2 = (r s1

a1s2
a2s3

a3)2 = xv1
a1v2

a2v3
a3 = y

y1
2 = 236

Zero Knowledge Proofs of Identity
U. Feige, A. Fiat, A. Shamir, Journal of Cryptology 1(2):77-94, 1988

If YES Peggy has showed to know

a secret without sharing this secret.

BACKUP SLIDES

54

BACKUP SLIDES

)K,C(H)K,C(H)K,C|P(H)C,P,K(H =+=

Key Equivocation

Bayes Th.

=0: known C and K, P = DecK(C)

Thus

)K,P(H)K,P(H)K,P|C(H)C,P,K(H =+=
=0: known P and K, C = EncK(P)Bayes Th.

55

)C(H)K(H)P(H)C|K(H

)K(H)P(H)C(H)C|K(H

)K(H)P(H)K,P(H

)C(H)C|K(H)K,C(H

)K,P(H)K,C(H

−+=
+=+

+=
+=

=

q.e.d.

P and K statistically independent

Bayes Th.

)P(HPlog)P(H 2 −

Key Equivocation (Lower Bound)

Plog
n

)P(H

n

)P(H
lim)P(H 2

nn

n
≤≈=

∞→

Pn , Cn the random variables representing
the n-gram (or n-sized bitstrings or n-
blocks) of plaintext and ciphertext.

H(Pn), H(Cn) entropy of n-gram of plaintext
and ciphertext.

H(P), H(C) entropy of the plaintext and
ciphertext.

Clog
n

)C(H

n

)C(H
lim)C(H 2

nn

n
≤≈=

∞→

1st Shannon Theorem (on source coding)

56

Plog

)P(HPlog

Plog

)P(H
1R

2

2

2
P

−
=−=

lower bound

PlognR)K(HClogn)K(H)P(nH)C|K(H 2P2n −≥−+≥

RP defines the redundancy of plaintext

|P|=|C|
q.e.d.

)C(H)K(H)P(H)C|K(H nnn −+= from Theorem on Key Equivocation

with large n

PlogRPlog)P(H 2P2 −=
from the definition of RP ek() is an invertible function

Clogn)C(H 2n ≤)P(nH)P(H n ≈

Tricks n. 1 and n. 2

1. Barrett Reduction: integer modular reductions without divisions

na
n

1
anmoda

−≡

2. Square and Multiply algorithm (to compute exponentiations)

Start p=1

57

192822222)10011(19

22

aa)aa(a)a)))a)1(((((aap

()0a()1

=====

→→

Scan the exponent translated into binary from MSB to LSB

G)G)))G)O(2(2(2(2(2G)10011(G19P

()20G()21 →+→

Trick n. 3

3. Double and Add Algorithm (to compute scalar multiplication in ECC)

This is the corresponding algorithm for EC of the Square and Multiply
Algorithm

Start P=O

Scan the scalar translated into binary from MSB to LSB

58

G19G)GG8(2

G)G)))G)O(2(2(2(2(2G)10011(G19P

=++=
=+++===

Trick n. 4

4. Shamir’s Trick: optimizes the computation of the form aP+bQ, where a,b
are integers and P,Q are two points on an elliptic curve.

A straightforward implementation requires two scalar multiplications and a
point addition.

Shamir’s trick allows to compute the above value at a cost close to one
scalar multiplication.

If the scanned bit positions are starting from MSB to LSB

(ai = 1, bi = 0) 2() + P

59

(ai = 1, bi = 0) → 2() + P

(ai = 0, bi = 1) → 2() + Q

(ai = 0, bi = 0) → 2()

(ai = 1, bi = 1) → 2() + (P+Q)

Shamir Trick - Example

60

Shamir Trick - Example

61

Shamir Trick - Example

62

Shamir Trick - Example

63

Shamir Trick - Example

64

Shamir Trick - Example

65

Shamir Trick - Example

66

Some definitions on Divisor Theory
• Let f be a rational function: zeros, poles, order of zeros and poles

• The divisor of f is div(f) =2(1)+1(∞)-3(-2)

• Degree of a divisor deg(div(f)) is defined as the sum of the orders of zeros and poles of f.
In the example the degree is 2+1-3=0

• Divisors D1 and D2 are equivalent or D1 ∼ D2 if D1=D2+div(f) for some f.

• Support of a divisor D is supp(D)={P∈E / nP≠0}.

3

2

)2x(

)1x(
)x(f

+
−=

1 is a zero order (or multiplicity) 2
-2 is a pole order 3
∞ is a zero order 1

67

• D1 and D2 have disjoint support if supp(D1) ∩ supp(D2) = ∅.

• Let f and g be rational functions defined on some field F. If div(f) and div(g) have disjoint
support, then f(div(g))=g(div(f)) (Weil reciprocity).

• Let E be an elliptic curve. For any function f on E is deg(div(f)) = 0 (theorem).

Let and let DP and DQ be degree zero divisors with disjoint supports
such that DP ∼ (P) − (O) and DQ ∼ (Q) − (O).

There exist functions f and g such that (f) = rDP and (g) = rDQ.

The Weil Pairing is defined by:
)D(g

)D(f
)Q,P(e

P

q

r =

)F(EQ,P kq
∈

Computing Weil Pairing

Miller’s algorithm to evaluate en = < P,Q >n

1. Given P,Q with order n, choose R with order n and R ≠ ∞,P,−Q,P−Q.

2. Write n in binary as n = (nt, ..., n1, n0).

3. Set f = 1, T = P and i = t.

4. If i < 0 then go to step 5. Else do the following:

(a) Let l be the tangent line to E through T. Let v be the vertical

line through 2T.

(b) Set T = 2T.

(c) Set
)()(2 RvRQl

ff
+=

The Weil Pairing, and Its Efficient Calculation
V. S. Miller

68

(c) Set

(d) If ni = 1 then do the following:

i. Let l be the line through T and P, and v the vertical

line through T + P.

ii. Set T = T + P.

iii. Set

(e) Set i = i − 1 and return to step 4

5. The desired value is < P,Q >n = f.

)()(RlRQv
ff

+
=

)()(

)()(

RlRQv

RvRQl
ff

+
+=

J. Cryptology, vol. 17, pp. 235-261, 2004

pages.cs.wisc.edu/~cs812-1/miller04.pdf

RSA Generator - Algorithm

• based on the RSA one-way function:

– xi = xi-1
b mod n i≥1

where

– x0 is the seed

– n = p*q, p and q are large primes

– b s.t. gcd (b, φ(n)) = 1 where φ(n) = (p-1)(q-1)

– n and b are public, p and q are secret

69

n and b are public, p and q are secret

Output

(x1, x2, …, xk)

yi = xi mod 2

Y = (y1y2…yk) pseudo-random sequence of K bits

Euler’s Generalization of Fermat’s Little Theorem:

If gcd(a,n)=1 then aφ(n) mod n = 1 where φ(n)={#a<n s.t. gcd(a,n)=1}

Blum-Micali Generator - Algorithm

• based on the discrete logarithm one-way function:

– let p be a prime then Zp is a cyclic group

– let x0 be a seed

xi = gxi-1 mod p i≥1

Output

(x1, x2, …, xk)

70

(x1 2 k)

yi = 1 if xi ≥ (p-1)/2

yi = 0 otherwise

Y = (y1y2…yk) pseudo-random sequence of K bits

Blum-Blum-Shub Generator - Algorithm

• based on the squaring one-way function

– Let p, q be primes with p≡q=3 mod 4

– Let n = p*q

– Let x0 be a seed

xi = xi-1
2 mod n i≥1

Output

71

Output

(x1, x2, …, xk)

yi = xi mod 2

Y = (y1y2…yk) pseudo-random sequence of K bits

